TA7984-NEP: MAINSTREAMING CLIMATE CHANGE RISK MANAGEMENT IN DEVELOPMENT 1 Main Consultancy Package (44768-012)

Sector Adaptation Plan Framework for Guidelines: Synthesis Report on Adaptation to Climate Change

Citation:

DOR & MoSTE. 2014. Strategic Road Network Adaptation Plan Framework for Guidelines : Synthesis Report on Adaptation to Climate Change. Prepared by ICEM - International Centre Environmental Management with the Nepal Ministry of Science, Technology and Environment (MoSTE) and Department of Roads (DOR) as part of TA – 7984 NEP: Mainstreaming Climate Change Risk Management in Development Project supported by ADB with funding from the Climate Investment Fund (CIF). Kathmandu, Nepal.

Pilot Program for Climate Resilience - PPCR3, Mainstreaming Climate Change in Development

RELATED TECHNICAL REPORTS IN THE SERIES: STRATEGIC ROAD NETWORK

Sector Reports	Report Name
Institutional Analysis	Department of Roads (DoR)
International Experience Paper	Strategic Road Network
Climate Change Threats	Modelling results for the Infrastructure Sectors in Nepal
Synthesis Report	Strategic Road Network
District Reports	Report Name
District Case Study Reports including:	Kathmandu
• Baseline	Dolakha
Climate Change Vulnerability	Panchthar
Assessment	Chitwan
Adaptation Planning Report	Myagdi
	Banke
	Achham
	Mustang
District Climate Change Profiles	Kathmandu
	Dolakha
	Panchthar
	Chitwan
	Myagdi
	Banke
	Achham
	Mustang
Guidance Reports	Report Name
MoSTE Guide	Climate Change Vulnerability Assessment and Adaptation Planning Methodology for Infrastructure Development in Nepal
Climate Change Risk Management Framework for Infrastructure Sectors in	A Guide for developing and implementing Sector Adaptation Plans for Action - SAPAs
Nepal	

EXECUTIVE SUMMARY

INTRODUCTION

The objective of this report is to set out the procedures that have been undertaken as part of the project in order to identify those elements of the roads infrastructure which are particularly susceptible to Climate Change threats. The report will also recommend interventions into selected guidelines and policies so that the risks imposed by Climate Change are reduced.

Studies were carried out in eight Districts to provide a baseline of data regarding the existing institutional capacity of DoR and the condition of the existing road network. In addition, examples of infrastructure assets which had suffered under past weather events were identified and examined.

Climate Profiles setting out the Climate Change Threat to each of the eight Districts were drawn up by the modelling team and then used as a basis of determining the possible future threats to the identified assets.

Having identified the possible threats to the existing assets from Climate Change the vulnerability of the assets was determined and adaptations to combat the risk from the threats proposed with recommendations as to their urgency and priority,

In conclusion the report recommends which guidelines, standards and policies should be reformed so that the road infrastructure of Nepal has increased resilience to climate variability and climate change.

ROAD SECTOR IN NEPAL

Since the founding of the Department of Roads in 1970 there has been a rapid expansion of the road network which has resulted in average growth in the network of 4% a year since 1970 to the present. More recently there has been a doubling of the length of the Strategic Road Network (SRN) from under 5,000km in 2001 to almost 11,000km in 2012. This rapidly increasing workload, together with a lack of a commensurate increase in the capacity of the Department has inevitably led to difficulties in the management, construction and maintenance of the road network. Budgets are poorly managed, design is sometimes not to the required standard, contracts are awarded to inexperienced contractors who submit bids which are too low, contracts frequently over-run with construction quality poor and there is a large maintenance backlog. The lack of records of design and as-built drawings for bridges and other important structures makes the assessment of the resilience of such structures very difficult.

THREAT TO ROAD SECTOR FROM CLIMATE CHANGE

Studies done by the National & International Hydrological Modelling TA Team in consultation with Department of Hydrology and Meteorology (DHM) show that climate change induced threats would affect differently people living in various regions in Nepal, their socio-economic development, biological diversity and other sectors. The results of such climate change induced threats are increased risks of floods, landslides, glacier outbursts, drought and other natural calamities.

The Strategic Road Network in Nepal is highly vulnerable to climate change. Geomorphological systems are dynamic, natural systems are already stressed so that even relatively minor weather events can cause major disturbances. The very nature of the SRN which reaches all parts of Nepal inevitably means that many sections of road cross rivers and streams which are prone to floods and hillsides which are unstable.

The climate change THREATS to the SRN are determined through an analysis of past extreme events and trends and through climate modelling and downscaling of future climate and hydrology against various scenarios.

BASELINE STUDY

The TA team recommended a geographic approach to identifying case studies whilst ensuring that the locations identified allow the case studies to cover the issues raised by each sector. During the Orientation Workshop the TA team consulted with the sector focal points and counterparts to prepare criteria for identifying the case study locations and subsequently identified six case study districts based on the criteria. The case study locations were chosen to ensure sufficient coverage of sector infrastructure and climate change issues and to represent the diverse ecological, infrastructure, climate, climate hazard and population density of Nepal.

Following the selection exercise conducted by sector Focal Points and the national team, and based on the priorities set under the NAPA and subsequent national vulnerability assessment studies, the case study assessments would be undertaken in the vulnerable districts of: (i) Mugu (ii) Dolakha (iii) Accham; (iv) Kathmandu Valley; (v) Banke; and (vi) Chitwan. Subsequently Mugu was dropped and replaced by Mustang with Panchthar and Achham added in order to broaden the extent of the baseline studies.

The Consultant's National Roads and Bridges Engineer visited all the Districts, met the Divisional and District Engineers and with their assistance drew up Baseline Reports which describe the road network and set out the resources available in the District. The Reports also highlight the trends and some of the issues affecting the management of the roads infrastructure.

Several road infrastructure locations were selected with the help of the Division and District Officers which illustrated the effects of previous severe weather events. Included were some examples of adaptation plans which had been implemented after severe weather related events.

VULNERABILTY ASSESSMENT & ADAPTATION PLANNING

The climate change vulnerability and adaptation process has been used at the case study level. It is a flexible process and set of tools which can be applied to sectors, areas and communities down to specific infrastructure level. It is applicable to varying assessment scales from localized projects to settlements up to city size, and to larger spatial planning units such as watersheds and provinces. The methodology combines international best-practice in climate change science and hydrological modelling with best-practice in a number of rapid assessment methodologies such as Strategic Environmental Assessment, life-cycle analysis, socio-economic analysis, energy efficiency audits, risk management and participatory planning. In this project the CAM process will be integrated with existing methods in Nepal and shaped and adjusted by national teams and stakeholders to suit local conditions.

In the Roads Sector the CAM methodology has been used to identify those sections of the road infrastructure which are vulnerable to particular climate change threats and to assess the degree of vulnerability. The methodology then sets out the possible adaptation actions that can be implemented to reduce the identified vulnerabilities together with a prioritisation process which generates a timetable for carrying out the adaptations.

The methodology for carrying out this process is set out in Section 7 of the report.

TYPICAL CLIMATE THREATS AND IMPACTS FOR THE ROAD SECTOR

Climate Threat Profiles have been produced by the modelling team for each District and each Sector. These Profiles set out the specific threats likely to occur in each District.

They identify the major threats to the road network as being:

- Increased total rainfall causing increased riverine floods and increase in average river levels
- Increase in number and intensity of storms causing increased frequency and intensity of rainfall
- Increase in intensity of rainfall causing increase in flash floods and debris flows

- Increase in the likelihood of Glacial Lake Outburst Floods (GLOF)due to increased ice melt and increased rainfall
- As a result of the increase in total rainfall and in the intensity of rainfall an increase in the number of landslides

This report sets out examples of the effect of the above threats on existing sections of the road network together with the corresponding Vulnerability Assessment and Adaptation Planning options.

CONCLUSION

The report recommends:

- In the short to medium term the elimination of the maintenance deficit must be considered the top priority.
- Reconstruction of an existing element in the road infrastructure should only be contemplated if there is strong evidence of likely failure of the element.
- Vulnerability Assessments should be carried out along the most important road links in order to determine which sections are most vulnerable to extreme weather events
- Increase the technical and physical capability of the Department to respond to disruption caused by severe weather events

REFORMS TO GUIDELINES AND POLICIES

The following Guidelines and Policies were identified during roundtable discussions as possible entry points for Mainstreaming Climate Change Risk Management into the procedures of DoR.

- Management procedures of DoR
- Project Implementation Plan
- Annual Road Maintenance Plan (ARMP)
- Highway Management Information System
- Environmental Management Guidelines
- Design Standards
- Project Designs

Recommendations are given as to how these Guidelines and Policies can be modified so that the Mainstreaming of Climate Change Risk Management into the procedures of DoR can commence.

ACRONYMS

AADT	: Average Annual Daily Traffic
ADB	: Asian Development Bank
ARMP	: Annual Road Maintenance Plan
AP	: Adaptation Planning
СС	: Climate Change
DDC	: District Development Committee
Dol	: Department of Irrigation
DoLIDAR	:Department of Local Infrastructure and Agricultural Roads
DoR	: Department of Roads
DoT	: Department of Transport
DR	: District Roads
DWIDP	: Department of Water Induced Disaster Project
DWSS	: Department of Water Supply and Sewerage
EIA	: Environment Impact Assessment
ESMF	: Environmental and Social management Frameworks
FR	: Feeder Roads
HFL	: Highest Flood Level
HMIS	: Highway Management Infromation System
HRD	: Human Resource Development
IEE	: Initial Environment Evaluation
MOLD	: Ministry of Local Development
MoPIT	: Ministry of Physical Infrastructure and Transport
MRM	: Mahendra Raj Marga
NEA	: Nepal Electricity Authority
NH	: National Highways
NMRM	: Naubise Mugling Raj Marga
NSET	: Nepal Society for Earthquake Engineering
NT	: Nepal Telecom
PRM	: Prithvi Raj Marga
PWD	: Public Works Department
RTO	: Road Transport Organization
SDE	: Senior Divisional Engineer
SED	: Strengthened Equipment Division
SRN	: Strategic Road Network
TRP	:Tribhuban Rajpath
UNDP	: United Nations Development Project
UR	: Urban Roads
VA	: Vulnerability Assessment
VCDPF	:Vulnerable Community Development Policy Framework
VDC	: Village Development Committee
vpd	: Vehicle per Day
VR	: Village Roads

TABLE OF CONTENTS

EXECUT	IVE SUMMARY .			I			
ACRON	YMS			IV			
TABLE OF CONTENTSV							
1	INTRODUCTION1						
2	BACKGROUND. 1.1 Road Sect 1.2 Classificat 1.3 Length of 1.4 Organisat 1.5 Strategies 1.6 Design Sta 1.7 Institution	or in Nepal ion of Roads SRN according to their T ional Structure of DoR and Plans andards al Issues	ypes and Development Regio	4 			
3	NATURAL HAZA	RDS IN NEPAL AND THEI	R EFFECTS ON THE ROAD SE	CTOR7			
4	BASELINE STUD4.1Selection4.2Selection4.3Damage A	ef Districts of Districts of Assets Assessment of Assets and	Possible Adaptation Measu				
5	CLIMATE CHANG 5.1 Typical Cl 5.2 Climate T 5.3 Threat Du 5.4 Threat Du 5.5 Key Clima	GE THREATS TO ROAD SI imate Threats for the roa hreat Profile Modelling te to Temperature Increa te to Precipitation and Fl te Change Threats to Roa	CTOR d sector se bod Increase ads Infrastructure	13 13 14 14 14 14 14			
6	CLIMATE RELAT 6.1 Climate cl	ED IMPACTS ON EXISTIN nange impacts on key roa	G ROAD INFRASTRUCTURE.				
7	VULNERABILITY7.1Summary7.2InterpretaRoadsSector7.3vulnerabi	ASSESSMENT of method/process ation of the climate vulu ity assessment OF ASSET	nerability assessment metho S	21 21 21 22 23 23 26			
8	ADAPTATION Pl 8.1 Objective 8.2 Adaptatic 8.3 Prioritizat	ANNING FOR TYPICAL A s n Planning Process ion and Phasing of Work	SSETS s				
9	CONCLUSIONS .9.1Baseline F9.2Climate T9.3Vulnerabi9.4Adaptatic9.5Comment	Reports hreat Profiles lity Assessment Reports n Planning Reports		35 35 35 35 35 36 36			
10	REFORMS ON SI 10.1 Roundt 10.2 Propos	ECTOR ISSUES able Discussions ed Reforms					
ANNEX	I: MAP OF STRA	EGIC ROAD NETWORK					

ANNEX II: CONDITION OF EXISTING SRN INFRASTRUCTURE	
ANNEX III: VULNERABILITY ASSESSMENT OF ASSETS	
ANNEX IV: ADAPTATION PLANNING FOR ASSETS	50
ANNEX V: LIST OF GOVERNMENT OFFICIALS PARTICIPATING IN TIFFIN TALK & MEETINGS	ROUND TABLE
ANNEX VI: ISSUES RAISED AT 22/23 SEP WORKSHOP WITH RESPONSES	61
ANNEX VII: BIBLIOGRAPHY	62

1 INTRODUCTION

This synthesis report was prepared as part of the TA – 7984 NEP: *Mainstreaming Climate Change Risk Management in Development Project* supported by ADB with funding from the Climate Investment Fund (CIF), and implemented by the Ministry of Science, Technology and Environment (MOSTE) in partnership with ICEM – International Centre for Environmental Management.

The project involves line departments working together with MOSTE in eight districts to develop and test a vulnerability assessment and adaptation planning approach tailored for their needs. The aim is to distil the lessons of the district experience into reforms at national level for planning and managing more resilient infrastructure. The national agencies are those concerned with infrastructure development throughout Nepal such as irrigation, roads and bridges, water induced disasters, urban planning and water supply and sanitation systems (Figure 1).

Figure 1: TA – 7984 NEP infrastructure sector department partners

A core group of technical staff from each of the departments participated in working sessions and missions to the eight districts of Kathmandu, Dolakha, Achham, Banke, Myagdi, Chitwan, Panchthar and Mustang (Figure 2) where vulnerability assessments and adaptation planning exercises were conducted for existing strategic infrastructure assets. The target districts were identified by core group members to reflect the diverse ecological zones of the country and varying environmental and

social conditions in which infrastructure is built. The district assessments were supported by climate change threat analysis and hydrological modelling at each case study location.

The core group comprised of some 30 members from 9 government agencies with each agency having a wider range of staff involved in the process of setting and implementing reform priorities with support from the project team (Figure 3). Sector focal points on the core group have a key role in promoting the climate change mainstreaming in their departments so that the design and management of existing and planned infrastructure progressively adjusts to become more resilient to the most significant projected changes and their associated potential impacts.

Figure 2: Target districts for developing an approach to infrastructure vulnerability assessment and adaptation planning

Figure 3: Infrastructure sector department climate change core group

Through the project, a "climate change risk management system" (CCRS) has been developed based on the district and international experience. The CCRS includes tools to facilitate climate change vulnerability assessment and adaptation planning and a dedicated process for the development of *sector adaptation plans for action* (SAPAs) that complement Nepal's existing climate change planning framework consisting of the National Adaptation Plan for Action (NAPA) and Local Adaptation Plans for Action (LAPAs).

The district case studies inform a sector vulnerability assessment and adaptation planning process that demonstrates the elements of a future SAPA process including the shape of SAPA reports (in the form of sector synthesis reports). The end result of this process is a sector oriented review of climate change vulnerability of key assets and a sector adaptation plan identifying the policy, procedures and structural reform priorities for building resilience in the sector and its infrastructure. The *sector synthesis reports* are being used as the basis for a sector specific training of government staff at the national and district levels on how to give effect to the reforms identified using the SAPA process and to apply the vulnerability assessment and adaptation planning tools developed by the core group and project team.

This Strategic Road Network Synthesis Report was prepared with DoR and involved a program of consultations in the districts and with the sector core group members and departmental officials. That process culminated in a national workshop at which government roads experts presented and discussed the synthesis conclusions and reform priorities. The government staff closely involved in the Strategic Road Network consultations and in the preparation and commentary on this report and the various linked sector district reports, climate change threat assessments and institutional analyses are listed in Annex V.

2 BACKGROUND

1.1 ROAD SECTOR IN NEPAL

The development of roads in Nepal gained momentum after Democracy arrived in 1951. In the early periods, roads were constructed by different government agencies such as Public Works Department (PWD), Road Transport Organization (RTO) etc. In order to develop the road network in a planned way, the Government of Nepal (GoN) established the Department of Roads (DoR) in 1970. DoR was responsible for planning, construction and maintenance of all type of roads until the establishment of Department of Local Infrastructure and Agricultural Roads (DoLIDAR) in 2001. After 2001, DoR was made responsible for the Strategic Road Network (SRN) only. The growth of SRN from the period from 1970 to 2010 is given in Table 1.

Year	Total SRN (km)	Growth Rate in %
1970	2166	
1975	2517	
1980	3570	
1985	3835	
1990	3933	Average growth rate
1994	4254	period is 4%.
1998	4740	p
2002	4861	
2004	7535	
2010	10,835	

Table 1: G	irowth	of Strategic	Road	Network
		or otheregie		

Source: Priority Investment Plan for the year 1970-2004 and DoR for 2004-2010

In spite of GoN giving high priority to the road sector, Nepal's road network is one of the least developed among the SAARC countries. This is one of the main reasons for poor growth of other sectors such as industry, agriculture, hydropower etc. The poor road network is also hindering the effective and comprehensive participation of the rural population in the country's economic growth process. As well as a poor network, the condition of existing roads is also far from satisfactory due to lack of maintenance and rehabilitation.

1.2 CLASSIFICATION OF ROADS

GoN classified the roads in following five categories and published in Road Classifications (Second Revision), 2050 (1992).

- (i) National Highways (NH);
- (ii) Feeder Roads (FR); FRs are further classified into FR (major) and FR (minor);
- (iii) District Roads (DR);
- (iv) Urban Road (UR);
- (v) Village Roads (VR)

For effective management of road network in the country and to make the best use of available resources, GoN/DoR further classified the roads in four classes on the basis of functional and administrative importance as defined below.

- (a) The Strategic Road Network (SRN) comprising NH and FRs.
- (b) The District Transport Network- comprising District Roads, Main Tracks and Main Trails.

- (c) The Urban Road Network comprising all non-strategic within the municipal boundaries.
- (d) The Village Transport Network includes short non-through roads, tracks and local trails linking single villages to the District Transport Network.

The Department of Roads has responsibility for the Strategic Road Network (SRN).

The District and Village Roads are being implemented/managed by a consortium of DDC/VDC/MOFALD and DoLIDAR.

Urban Roads are the responsibility of the respective municipalities.

1.3 LENGTH OF SRN ACCORDING TO THEIR TYPES AND DEVELOPMENT REGIONS

The existing designated SRN comprises approx 11,636 km of open and operational National Highways and Feeder Roads. The distribution of SRN according to their categories, surface types and location wise is given in Table 2 and 3.

Development		Туре	of Roads	i	Road Category			Total		
Regions	BT	GR	ER	Total	NH	FRN	FRO	MH	PR	SRN
Eastern	1156	353	1060	2570	797	1180	28	429	136	2570
Central	1827	632	714	3173	876	1888	137	61	211	3173
Western	1032	169	1050	2250	478	1385	194	142	50	2250
Mid-Western	871	513	924	2308	735	948	216	309	100	2308
Far-Western	687	220	425	1334	525	627	0.00	87	94	1334
Total in Nepal	5574	1888	4174	11636	3411	6029	575	1028	592	11636

Table 2: Length of SRN with its Pavement Types& Regions (in Kilometres)

Source: Statistics of SRN, 2011/12; DoR

Table 3: Length of Strategic Road Network as per Terrain

Description	Hills	Terai	Total	
Roads (km)	7507	4129	11636	
Courses Statistics of CDN 2011/12, DoD				

Source: Statistics of SRN, 2011/12; DoR

A map of the Strategic Road Network is given in Annex 1.

1.4 ORGANISATIONAL STRUCTURE OF DOR

DoR is responsible for all the SRN and associated bridges. The department manages the works through: Five Regional Offices, 25 Maintenance Division Offices, Road Projects, ADB Directorate, Postal Road Directorate and Bridge Project.

The department is headed by a Director General. There are 4 Deputy Director General (DDG) reporting directly to the DG. DoR is responsible to the Ministry of Physical Infrastructure & Transport (MOPIT).

1.5 STRATEGIES AND PLANS

Based on the overall transport policy, DoR has prepared: (i) DoR Strategy, 1995 (MOPIT/DoR); (ii) Bridge Policy and Strategy, (MOPIT/DoR) 2004 and (iii) HRD Policy and Strategy, (MOPIT/DoR) 2002.

The strategies and policies of above documents are summarized below.

Objectives of the Strategies

- Increase policy level awareness;
- Prepare network planning;
- Establish direction of donors;
- Improve maintenance operations and management;
- Prepare needs based budget;
- Improve plant management.

Main Strategies

- Introduce Network Planning
- Support and promote the use of local expertise and materials for road construction;
- Maximise the benefits of these resources through the use of stage construction for new roads (design for present needs and upgrade only when justified by actual demand);
- Put the present roads in the Strategic Network into a maintainable condition;
- Execute planned maintenance;
- Initiate the development of National Standards for road construction and maintenance;
- Put the DOR Heavy Equipment Divisions on more commercial lines;

1.6 DESIGN STANDARDS

Nepal Road Standard-2070 is the latest publication on design of road, bridges and allied structures. It supersedes all the previous design standards. It is divided into two main parts:

Part A: Roads and Part B: Bridges.

Major aspects covered in Part A are: Road classification, Traffic Characteristics, Capacity and Level of Service, Terrain Classification, Design Speed, Sight Distance, Horizontal Alignment, Vertical Alignment, Road Cross Section Elements, Traffic Signs and safety, Miscellaneous Road Appurtenances (Guard Rails and Safety Barriers, Road Humps, Bicycle Tracks, Pedestrian Facilities, Bus Lay Bys, Curbs, Road Lighting, Road Drainage), Access Control, Pavement, Road Intersections, Structures, Maintenance, Aesthetics and Landscape Design, Roadside Arboriculture, Environmental Consideration, Roadside Service Facilities

Part B (Bridges) covers the following aspects:

Bridge Structure, Bridge Highway Loading (IRC and ASHTO), Clearances (vertical and horizontal) Bridge Classification, Minimum Vertical Clearance above HFL, Kerbs and Safety Kerbs (bridge barriers), Carriageway Drainage, Material Specification etc.

1.7 INSTITUTIONAL ISSUES

The following governance issues are highlighted by the Baseline Studies:

- Delays in approving and releasing budgets
- Delays in approving programmes
- Inexperienced contractors who submit low bids which are unrealistic
- Contracts not started or completed on time
- Insufficient technical staff
- Many roads which are not part of the SRN become the responsibility of DoR because of influence from influential individuals or organizations
- Backlog of maintenance

3 NATURAL HAZARDS IN NEPAL AND THEIR EFFECTS ON THE ROAD SECTOR

Nepal is one of the countries most vulnerable to natural hazards. Because of its topographical variation and geological characteristics, together with torrential rain during the monsoon season, the country frequently experiences several types of hazards such as landslides, debris flows, floods and earthquakes. These phenomena cause loss of life of several hundred people as well as loss of properties worth millions of rupees every year. Besides the above, they also pose severe threats to physical infrastructure, and disrupt social and economic development. Their impacts are worsened by: (a) poor economic condition (people as well as country) (b) lack of awareness and preparedness and (c) absence of measures for mitigating their impacts. The major natural disasters being experienced in Nepal are given in table 4.

S.No.	Types of Hazard	Prevalence	Effect on Road Sector
1	Earthquake	Whole Nepal lies on high- hazard earthquake zone	High; several roads and bridges were damaged in the past.
2	Flood (inundation, bank cutting and sediment deposition)	Terai, Middle Hills	Very high; Several roads and bridges are damaged every year causing heavy loss of lives and properties.
3	Landslides	Hills and Mountain,	Very high. Causes severe damage roads, bridges and properties.
4	Debris Flow	Hills and Mountain,	Medium; Instances of debris flow in the past is low. Debris flow totally washed away bridge at Larcha (along Arniko Highway), Beni-Jomsom Road at Marpha (Mustang) etc.
5	Glacier Lakes Outburst Floods (GLOF)	Higher Himalaya; its effect will reach to Higher Mountains, and middle Hill regions.	Large scale damage to roads and bridges by GLOF is not recorded.
6	Avalanche	Higher Himalaya	None
7	Fire (forest)	Forest of Hills and Terai	Very low
8	Drought	All over the country	Vulnerability to roads and bridges will reduce.

Table 4: Types of natural hazards in Nepal and their effect on road sector

4 **BASELINE STUDIES**

4.1 SELECTION OF DISTRICTS

In total eight districts were selected to assess the climate change effect on road sector. One of the major criterions for their selection was their degree of vulnerability to natural hazards. The list of the districts including details such as location, terrain and type of hazards is given in **table 5**.

S. No.	District	Location (Development Regions/ Zone)	Terrain	Frequently Occurring Natural Hazards
1	Panchthar	Eastern/Koshi	Hills and Mountains	Landslides, floods, fire, debris flow , drought
2	Dolakha	Central/Janakpur	Mountains	Landslides, floods, debris flow drought, GLOF
3	Kathmandu	Central/Bagmati	Valley and mountains	Landslides, floods, fire, drought
4	Chitwan	Central/Narayani	Terai, Chure,	Landslides, floods, debris flow, fire, drought
5	Myagdi	Western/Dhaulagiri	Mountains	Landslides, floods, debris flow drought
7	Banke	Mid Western/Rapti	Terai	Floods, fire, drought
8	Achham	Far Western/ Seti	Mountains	Landslides, floods, debris flow, drought

Table 5: List of Districts and Frequently Occurring Natural Hazards

4.2 SELECTION OF ASSETS

In general assets (mostly roads and bridges) were selected in all districts for Asset Baseline Report and Adaptation Audit Report. The key criteria for selection included:

- Infrastructure of national strategic importance
- Infrastructure of district strategic importance
- Infrastructure that has been impacted by past extreme events
- Infrastructure located in areas prone to past extreme events
- At least one planned infrastructure

Beside above, following aspects were also considered:

- Suggestions of DoR's Division Chief;
- Different type of structures are covered;
- Different types of problems faced by roads and bridges are covered;

The final list of assets and the reasons for their inclusion is given in **Table 6**.

Table 6: List of Assets

Districts/	Assets				
Responsible Division of DoR	Name (or type of works)	Туре	Reasons for inclusion		
Panchthar/	Barpa Landslide	Road	Example of successful adaptation measure.		
llam			One of the most problematic sites of Panchthar-Phidim Road Section in the past. At present it is almost stabilized after construction of breast walls and bio- engineering works.		
	Amarpur Landslide	Road	Example of manmade disaster.		
			During pavement construction, the contractor excavated roadside hill slope for gravels and crushed stones. The excavation made the hill slope very unstable causing frequent landslides and road closures.		
	Kabeli Bridge Mechi Highway; at 60kilometer from Phidim.	Bridge	Appropriate selection of site and type of bridge.		
	Hengwa Khola Bridge;	Bridge	Improper selection of bridge type.		
	Mechi Highway; at 9 kilometer from Phidim		The gradient of the river at the bridge site is very high and transport boulders. The boulders hit the piers and may cause damage. With CC effect, the boulder impact will increase. Piers should be avoided at rivers which transport boulders.		
	Tamor Bridgeway; 10 kilometer from Phidim	Bridge	Newly constructed bridge at the border between Panchthar and Dhankuta Districts. It is the longest bridge of the district. There is high possibility of landslides at both approach roads due to heavy excavation. The landslides may damage bridge.		
Dolakha/ Charikot	Protection structures at Charnabati Bridge site	Road and Bridge	This is one of the most expensive protection works along Lamosngu-Jiri Road. Most probably such expensive works are not constructed for protection of roads and bridges in other parts of the country as well.		
	Rehabilitation/reconstru ction of road.	Road	DoR successfully rehabilitated/ reconstructed 150m long section of this road which had totally collapsed by landslide in the first week of August in 2011.		
	Tamakoshi Bridge	Major Bridge	One of the largest and very important bridges in the district.		
	Dholi Khola Bridge (Under construction)	Mediu m bridge	This is a unique case of damage. During the construction of bridge, large amount of debris was deposited at/around the bridge site. The construction activities are stopped after this incident.		
	Crossing structure	Culvert	Example of vulnerability of smaller structures to natural hazards.		
Kathmandu	Road widening	Road	This is the busiest section of all the roads (excluding city roads) in Nepal. At present DOR is widening a small section where the traffic jam is very high.		
	Bagmati Bridge	Bridge	The bridge is very highly vulnerable to damage due to heavy scouring.		

	Bagmati Bridge	Bridge	Example of bridge damage due to heavy encroachment and extensive sand mining.
Chitwan	Lothar Bridge	Bridge	To show an example of exceptionally heavy siltation at/around the bridge. At present the vertical clearance at the bridge is 2.5m which was 8m in 1977 (during construction).
	Riu Khola Bridges	Bridge	The river is overflowing and damaging surrounding areas even after the construction of two bridges.
	Approach Road of Sauraha Bridge	Road	Flood washed away approach road and houses at left bank in 2003. The main cause of damage was substantial restriction of waterway. DOR constructed very short bridge (in comparison to the waterway width) to save the cost.
	Landslide Protection works	Road and Bridge	Several check dams are constructed at upstream to protect road and bridges from debris, which is unique and successful.
	Slab bridge across	Slab	To show the example of:
	Badarmudhe Khola	Bridge	 change of hydrological regime within short period and;
			- poor design and construction.
Myagdi	Road damage at Bhirkate.	Road	The road was damaged due to deposition of the large amount of debris by Sunari Khola in July 2012. It is one of the most vulnerable location on to Beni-Jomsom Road.
	Timure Bhir (landslide)	Road	About 50 meter of road section was completely washed away by the landslide. DoR realigned the road at this location.
	Under construction bridge across Kaligandaki River	Mediu m Bridge	After construction of abutments of bridge across Kaligandaki River at Bhirkate, the river washed away right bank requiring longer bridge than originally designed. Example of designing shorter bridge than required by site condition.
	Kaligandaki River Bridge.	Major Bridge	Example of different types of protection measures at/around the bridge and vulnerability of Beni Bazaar due to its proximity with Kaligandaki River.
	Under construction bridge across Lasti Khola	Mediu m Bridge	The contractor was redyeing for concreting of superstructure. Suddenly a flash flood washed away falsework, formorks and reinforcements.
Mustang	Road section damaged	Road	Example of an extreme event.
	by Podkyu Khola at Marpha		In July 2013 there was extensive rain at/ around Marpha area which was a very rare event in that area. The rain caused heavy flooding and debris flow. The flood washed away about 250m long road sections. Such incident will be more with CC and hence requires proper study.
	Road section eroded by Kaligandaki River at Tukuche	Road	About 1.5 kilometer of road is located very near to Kaligandaki River. The river is extensively eroding the right bank and at one location it has washed away 40m long road section. This issue is very important as substantial road length falls under this threat. With CC

			effect this threat will aggravate and hence is included for this study.
	Road damaged by landslides near Lete Khola	Road	The road sections at both sides of Lete Khola are frequently blocked due to landslides. Because of weak geology along considerable road length, blockage of traffic by landslides is common. Such incident will more frequent after CC effect if the issue is not properly addressed.
Banke	Structures to protect MRM from river erosion.	Dykes	Dyke is constructed to protect the road from increase in flood level due to intake construction. Construction quality of the dyke is good. This type of structures is rare in the country.
	Road rehabilitation works	Miscella neous	Example of severe damage to road by flood. During high flood Rapti River frequently damages/destroys the left approach road. The river overflows to several villages at southern part of the district causing heavy loss of lives and properties.
	Crossing structure along	Culvert	Example of poor maintenance
	Crossing structure along MRM.	RCC Bridge	Example of adequate adaptation measure. Bridge was constructed as the existing causeway was not sufficient to pass the river discharge.
	Rapti River Bridge	Steel Bridge	To show example of traditional protection works for bridge and river banks
Achham	River bank erosion by Budhiganga River causing high vulnerability to road.	Road	On Asadh 20 (mid june) the Budhiganga River severely damaged about 60m long section of the road and is endangering the stability of 200m long section at the same location. If the road will be washed away, the road link of Bajura District with National Road Networks will be cut off. The problem is very critical.
	Landslide	Road	Typical landslide causing damage and closure of road.
	Landslide at km 14+500 along Sanfebagar- Martadi Road	Road	It is one of the biggest landslides along Sanfebagar- Martadi Road. The landslide is causing serious damage to road and obstructing traffic at frequent interval.
	Motorable Bridge across Budhiganga River	Bridge	Due to extensive erosion, the reinforcements of the lower portion of one pier of the bridge are exposed. If the problem is not corrected timely, the repair cost could be very high. Example of poor maintenance.

4.3 DAMAGE ASSESSMENT OF ASSETS AND POSSIBLE ADAPTATION MEASURES

Damage assessment was done of all the above mentioned assets. Assessment was done by:

- Conducting field verification
- Collecting information from the respective DoR Divisions.
- Interviewing local people
- Studying drawings if available etc.

While selecting the assets, one of the criteria was that they are affected/damaged by some kind of natural hazard. The main reason for it is to figure out the probable additional damages on them by climate change effect. In several cases, DOR has already provided adaptation measures. These measures will be very useful for adapting measures on roads and bridges due to climate change effect and hence they are considered as an important part of the study.

5 CLIMATE CHANGE THREATS TO ROAD SECTOR

5.1 TYPICAL CLIMATE THREATS FOR THE ROAD SECTOR

Several studies have assessed and documented the impacts of climate change on road sector in developed countries. As such studies have not been carried out in Nepal experience from developed countries was used to inform the assessment presented in this report. The findings from of the studies conducted in developed countries especially on road sector are summarized in Table 5.

Climate	Potential Impacts	Vulnerability	Mitigation Measures	
Event		to Roads and		
		Bridges	General	Specific
Temperature	Temperatureincreasecancausepavementdeteriorationduetoliquidation of bitumen.	Moderate	Use stiff bitumen to withstand additional heat.	Include additional clauses in the Specifications.
Rainfall	Increased rainfall intensity will create: - More floods affecting drainage structures, bridges, road pavement, driving condition and visibility. - Increase in HFL, waterways, scouring of bridge foundation etc. - Will trigger more landslides and mudslides in mountainous roads causing frequent road blocks	High	Review (and revise if required) the current practice of: - Calculating return period, design discharge, high flood level, clearance above high flood level, length of waterway, water current force etc. - Design methodology of slope protection works (retaining and breast walls), subsurface drains, catch drains etc. - Design of pavement including selection of appropriate type of base and sub-base, materials -Increase road surface camber for quick removal of surface water. -Increase frequency of periodic maintenance.	Revise the road and bridge design parameters conducting consultation with the departmental staffs, designers, hydrologists, meteorologists and CC specialists. Avoid landslide areas as much as possible. Revise the landslide design parameters with consultation with other concerned agencies.
Storms and storm surges	Rainfall and winds associated with storm/cyclone can create flooding, inundation of embankments, and affect road transport.	Moderate; heavy storms are rare in Nepal.	Increase the capacity of side drains, cross drains, road embankment height etc.	Find out the probable increase in rainfall and design the structures accordingly. For this, involvement of DHM and prominent hydrologists of the country is very

Table 5: Road Infrastructures, Potential Impacts, and Design Parameters

This experience was later synthesised with climate threat modelling conducted specifically for the project. The modelling methodology and findings are discussed briefly below.

5.2 CLIMATE THREAT PROFILE MODELLING

District-level climate threat profiles were prepared to assess future climate change impacts on irrigation systems relying on localised projections of future climate change for the period 2040-2060 compared to a baseline of 1980-2000. Monitoring data and results from the regional dynamic downscaling model PRECIS (Providing Regional Climate Scenarios for Impact Studies) were used for the climate projections. The monitoring data was projected using climate change statistics (averages, variability/variance, number of dry days and extreme values) from the PRECIS results and then interpolated with orographic adjustment into the high resolution grids necessary for development of district-level models. This procedure can be described as combined dynamic/statistical downscaling.

The results of the downscaling were incorporated into the IWRM basin-wide hydrological model which computed changes in temperature, precipitation amounts and intensities, river discharges and flood amounts and runoff for every 120 x 120m grid cell in each district. Hydrological and other processes were computed in each grid cell and the grid cells were connected through mass transport above ground (e.g. rivers and overland flow) and through the soil (e.g. groundwater flow). The model grid was constructed by combining together soil, land use, topography and river networks. Observed and projected meteorological data as well as water utilisation and infrastructure were added to the model together with the grid.

Despite the limitations in data coverage and quality and time available for model calibration the model represented quite well the hydrological characteristics within each of the target districts. Based on calibration results using historical events, modelling could also be deemed reliable in representing changes caused by climate change scenarios.

The findings of the climate threat profiles are summarized in the following sections.

5.3 THREAT DUE TO TEMPERATURE INCREASE

The increase in maximum temperature in all districts for 2040-2060 is given in table 6.

Table 6: Increase in Maximum Temperature in 2040-2060 due to Climate Change Effect.

Increase in	Districts							
temperature	Panchthar	Dolakha	Kathmandu	Chitwan	Myagdi	Mustang	Banke	Achham
(⁰ C)	1.6	1.7	1.85	1.66	1.7	1.7	2.15	1.5

It is considered that the adverse effect on road and bridge infrastructure due to above temperature rises will be nominal.

5.4 THREAT DUE TO PRECIPITATION AND FLOOD INCREASE

The climate change effect will increase the rainfall intensity and duration and will also increase the flow volume in the rivers. The change of rainfall and flow increase pattern in all districts is given in T**able 7**.

Districts	Increasing intensity of rainfall events	Increasing extrem events; Fr occu	number of e rainfall equency of rrence	Increasing wet season (peak monthly average) flow	Increasing risk and severity of flash floods during wet season	Remarks
		2000	2040-			
Panchthar	Yes	every 20 years	every 2 years	up to 170 % (Tamor River)	Yes	Average number of dry days in January will increase from 6.3 to 6.9 days
Dolakha	Yes	every 100 years	every 52 years	up to 140 % at Tamakoshi River in Busti.	Yes	
Kathmandu	Yes	every 5 years	every 2 years	up to 68% (Bagmati River)	Yes	pooling will increase by up to 220mm; irrigation demand will increase by up to 980mm
Chitwan	Yes	every 6 years	every 2 years	up to 36% (Rapti River)	Yes	
Myagdi	Yes	every 10 years	every 2 years	up to 89% (Kaligandaki River)	Yes	The flood frequency of Myagdi River at Mulaghat will increase by 78 %
Mustang	Yes	every 60 years	every 2 years	up to 257% (Kaligandaki River)	Yes	The average number dry days in June is increasing from 5.5 to almost 7 days
Banke	Yes	every 50 years	every 35 years	up to 5% (West Rapti River)	Yes	
Achham	Yes	every 50 years (Benighat)	every 30 years (Benighat)	up to 36% (West Rapti River)	Yes	The peak flow will shift from July to August

Table 7: Increase of Rainfall and Flood due to Climate Change

5.5 KEY CLIMATE CHANGE THREATS TO ROADS INFRASTRUCTURE

The above findings show that there will substantial increase in the number of extreme rainfall events and in the frequency and magnitude of extreme river flows. Hence following aspects need serious consideration while designing road and bridge structures:

DESIGN LIFE: At present the important bridges are designed for 100 years return period and minor bridges for 50 years return period. The drainage structures, in general are designed for 10, 20 or 25 years depending upon the importance of the roads. In order to accommodate the increased flood volumes, bridges as well as drainage structures should be designed for higher return periods. For example there will be a need to design important bridges for more than 200 years return period (instead of 100), rural road bridges for 100 years return period (instead of 50) and drainage structures for 50 years return period (instead of 25) to accommodate the increasing flood volumes.

BRIDGE DESIGN: Design of bridges should endeavour to make the structure more resilient to over topping by high floods. Abutments and piers should have piled rather than open foundations wherever possible to reduce the risk of failure from scour.

INVERT LEVEL OF BRIDGES/CULVERTS: Due to increase in discharge, the high flood level (HFL) will increase. This will require increasing the invert level of bridges/culverts.

FOUNDATION DEPTH OF BRIDGES/CULVERTS: The increased discharge will cause more scouring requiring increased foundation depth.

SIZE OF DRAINAGE STRUCTURES: Sizes of both side drainage and cross drainage structures should be increased to accommodate increased flood volumes.

FREQUENCY OF DRAINAGE STRUCTURES: In addition to assessing whether to increase the size of cross drainage structures it will be necessary to consider whether additional structures will be more beneficial or more cost effective.

ROADS ADJACENT TO RIVERS: Roads lying in low land and adjacent to rivers will be highly affected by increased flood flows. Additional protection works to resist erosion and scour will be required

ROADS CROSSING FLOOD PLAINS ON EMBANKMENT: Roads on embankment crossing the flood plains of the larger rivers will require additional cross-drainage structures to allow for the increased flows predicted due to Climate Change. The construction of submersible roads at a low level for roads crossing flood plains is a possible option that should be investigated. These would have the additional advantage of not impeding flood flows across flood plains.

REVIEW OF SPECIFICATIONS: Specifications for materials and mixes used in drainage structures and road pavements should be reviewed in order to increase their resilience to the impact of increased rainfall, increased flows and greater temperature variations.

6 CLIMATE RELATED IMPACTS ON EXISTING ROAD INFRASTRUCTURE

6.1 CLIMATE CHANGE IMPACTS ON KEY ROAD INFRASTRUCTURE ASSETS

A selection from the assets visited during the baseline studies is given below to illustrate the effects on existing infrastructure of weather events similar to those predicted to become more severe because of climate change. The chosen assets are described below.

Asset	Weather Related	Threat	Damage/Adaptation
ASSET I			
Sanfebagar to Martadi Road Achham District	Rainfall on unstable slope above road		Landslide cut road
General view of the landslide		The condition of road at the landslide area is very poor	
ASSET II			
Nepalgunj to Bagouda Road Banke District	High riverine flood or floodplain	Rapti River Road embankment cut at approad to bridge across Rapti River	
	·		•
Rapti River has washed away a road to bridge across river	section of approach	Triple cell an discharge th to the road	nd double cell PC were constructed to ne overflow from Rapti River. Damage shows that these structures are not

sufficient during high flood

Asset	Weather Relate	ed Threat	Damage/Adaptation	
ASSET III				
Bridge across Bagmati River at Tinkune Kathmandu District	High flow in Bagmati River		Scour of river bed exposing piled foundations of central pier	
View of the bridge from upstream		Exposure of	f pile foundation due to extensive	
		scouring of river bed.		
ASSET IV				
Sanfebagar to Martadi Road Achham District	High Flow in Budh	liganga River	Road running along bank of river eroded by high flood	
View of the road section from San	febagar side	Bank protect.	ion work has failed	

DOR & MOSTE | Mainstreaming Climate Change Risk Management in Development Strategic Road Network Sector Adaptation Plan Framework for Guidelines: Synthesis Report

Asset	Weather Related Threat	Damage/Adaptation
ASSET V		
Bridge across Lothar River on East – West Highway Chitwan District	High Flow/Flash Flood in Lothar River causes debris flow	Debris flow causes bed level to rise threatening bridge from future high flows

Extensive siltation at the bridge site. The bed level has risen by 6m in 35 years

Excavation of river bed materials downstream of bridge. The speed of excavation is very slow

ASSET VI		
Charnabati Bridge on Tamakoshi	Intense rainfall in catchment	Flash flood washed away bridge and
to Jiri Road Dolakha District	above road causes flash flood	caused landslide which cut approach
		road to bridge. Adaptation of
		extensive river training work and
		bio-engineering carried out

Several drop structures, bank protection walls, bed protection works, cross drainage structures & tetrapods provided

Beside structures heavy bio-engineering works are also provided at both banks of the river

DOR & MOSTE | Mainstreaming Climate Change Risk Management in Development Strategic Road Network Sector Adaptation Plan Framework for Guidelines: Synthesis Report

Asset	Weather Related Threat	Damage/Adaptation
ASSET VII		
Mugling to Narayanghat Road Chitwan District	Rainfall on unstable slope above road	Heavy rainfall caused landslide which blocked road. Check dams & retaining walls constructed to stabilize hillside above road.

Series of check dams/retaining walls. Tthe check dam start at the road and extend about 150m up the gulley caused by the stream

Stone masonry breast wall at foot of slope. Substantial amount of water is emerging from weep holes indicating that slope remains very wet

7 VULNERABILITY ASSESSMENT

7.1 SUMMARY OF METHOD/PROCESS

The VA of the assets is carried out following the procedure as outlined below:

Figure 4: Vulnerability Assessment Process

There are two components in this phase

- I. Assessing the impact of a climate threat on an asset and system; and
- II. Defining the level of vulnerability of the asset and system to the projected threats.

IMPACT ASSESSMENT

The potential impact (or level of risk) is a function of the level of **exposure** to climate change induced threats and the **sensitivity** of the target asset or system to that exposure.

EXPOSURE: exposure is the degree of climate stress on a particular asset. It is influenced by long-term changes in climate conditions and by changes in climate variability, including the magnitude and frequency of extreme events.

The following criteria influence exposure:

- Duration (e.g. hours or days of flooding)
- Location (e.g. distance from flood)
- Intensity (e.g. strength of rainfall, speed of flow)
- Magnitude (e.g. volume, flow or size of event)

SENSITIVITY: Sensitivity is the degree to which a system will be affected by, or be responsive to, climate change exposure.

The following variables affect infrastructure sensitivity:

- i. Construction quality
- ii. Levels of maintenance
- iii. Protective system (e.g. river training wall to protect asset)
- iv. Design (including safety margins)

A key tool in the process is the use of the **Climate Change Impacts Matrix** (Figure 5). The matrix is completed using descriptors for exposure and sensitivity, for example, 'very low' to 'very high'. If the exposure of a bridge to the threat of high flash floods is **High** (due to catchment area and

topography) and its sensitivity to scour is **Very High** (due to soil type and foundation design) then the Matrix tells us that the **Impact** of the threat is **Very High**.

	Exposure of system to climate threat						
t		Very Low	Low	Medium	High	Very High	
Sensitivity of system to climate threa	Very High	Medium	Medium	Medium High		Very High	
	High	Low	Medium	Medium	High	Very High	
	Medium	Low	Medium	Medium	High	Very High	
	Low	Low	Low	Medium	Medium	High	
,	Very Low	Very Low	Low	Low	Medium	High	

Figure 5: Impact Assessment Matrix

VULNERABILITY ASSESSMENT (VA)

A vulnerable system or asset is one that is sensitive to changes and extremes in climate and hydrology and one for which the ability to adapt is constrained. The vulnerability of an asset is therefore a function of the potential impact of changes in climate and the ability (Adaptive Capacity) of the responsible authority to respond to any possible impact.

The following variables affect the **adaptive capacity** of the responsible institution:

- i. Institutional Strengths/Weaknesses
- ii. Financial Resources
- iii. Technical Capacity
- iv. Ability to respond effectively to extreme events in the District

The Vulnerability of an asset is determined by applying the Impact value given by the Impacts matrix and the assessed value of adaptive capacity to the **Vulnerability Assessment Matrix** (Figure 6).

This value of **Vulnerability** obtained (from Very High to Very Low) is then carried forward to the Adaptation Planning phase of the Climate Change Risk Management methodology

DOR & MOSTE | Mainstreaming Climate Change Risk Management in Development Strategic Road Network Sector Adaptation Plan Framework for Guidelines: Synthesis Report

	Impact					
Adaptive Capacity		Very Low Inconvenience (days)	Low Short disruption to system function (weeks)	Medium Medium term disruption to system function (months)	High Long term damage to system property or function (years)	Very High Loss of life, livelihood or system integrity
	Very Low Very limited institutional capacity and no access to technical or financial resources	Medium	Medium	High	Very High	Very High
	Low Limited institutional capacity and limited access to technical and financial resources	Low	Medium	Medium	High	Very High
	Medium Growing institutional capacity and access to technical or financial resources	Low	Medium	Medium	High	Very High
	High Sound institutional capacity and good access to technical and financial resources	Low	Low	Medium	Medium	High
	Very High Exceptional institutional capacity and abundant access to technical and financial resources	Very Low	Low	Low	Medium	High

Fig 6: Vulnerability Assessment Matrix

7.2 INTERPRETATION OF THE CLIMATE VULNERABILITY ASSESSMENT METHODOLOGY CRITERIA FOR THE ROADS SECTOR

In the highways sectors there are two major elements which make up a road link:

- 1) Road pavement & side drainage
- 2) Cross drainage structures

It is necessary to consider for both these elements their sensitivity and exposure to the various increased threats due to climate change.

SENSITIVITY

The following tables outline the sensitivity of the two road elements to various climate threats.

Climate Threat	Sensitivity	Impact
Increased rainfall Increased intensity of rainfall	Depends on condition of existing pavement – a pavement in poor condition will have a High sensitivity	Damage to surface of pavement (the threat/exposure is High/V. High so the impact is H/VH)
Increased rainfall Increased intensity of rainfall	Side drains which are in good condition and well maintained will have a low sensitivity	Damage to side drains (threat is H/VH but for well maintained drains the sensitivity is medium so the impact is M/VH
Increased rainfall increases instability of hillside Increased intensity of rainfall increases instability of slope High flow in river scours base of hillside & causes landslide	A road across an hillside prone to landslides will have a Very High sensitivity A road above a river which is eroding the toe of the hillside will have a Very High Sensitivity	Landslide destroys road & side drains (the threat is V/VH and the sensitivity is H/VH so the impact is VH)

Table 10: Road pavement and side drains sensitivity to climate threats

DOR & MOSTE | Mainstreaming Climate Change Risk Management in Development Strategic Road Network Sector Adaptation Plan Framework for Guidelines: Synthesis Report

Climate Threat	Sensitivity	Impact
Increased rainfall causes high monsoon flood Intense rainfall causes flash flood	A road constructed next to a river will have a Very High sensitivity	Road running along river valley damaged by adjacent river (Threat of high flood or flash flood is M/H and sensitivity is VH so impact is VH)

Table 11: Cross road drainage sensitivity to climate threats

Climate Threat	Sensitivity	Impact	
Increased rainfall causes riverine flooding	A road with adequate cross drainage structures for today's floods will have an increasing sensitivity as climate change takes effect	Road on embankment crossing flood plain washed out (the threat of flood is H/VH but sensitivity is dependent on adequacy of cross drainage and can vary from M to VH so impact is M to VH)	
Increased intensity of rainfall causes large flash flood	Design and condition of bridge foundations will cause sensitivity to vary from Medium to Very High	Bridge on river with small catchment area is damaged by flood (the threat of flash flood on river with small catchment is M/H and the sensitivity can vary from m to VH depending on condition so impact casn vary from M to H)	
Increased intensity of rainfall increases size of flash flood	Design and condition of causeway slab and retaining walls will mean sensitivity will vary from Medium to Very High	Causeway for stream with small catchment area washed out by flood (as above)	
Increased temperature variation from cold to hot season	The condition and design of the expansion joints & bearings will cause the sensitivity to vary from Low to High	Large Bridge over major river – damage to bearings & expansion joints (the threat is M/H and the sensitivity L to H so the impact is M?H	
Increased rainfall causes high monsoon flood	The condition and design of the bridge piers and abutments will cause the sensitivity to vary from Low to Very High	Settlement or scour at pier or abutment (threat is H/VH and sensitivity L to VH so impact is L to VH depending on condition	

EXPOSURE

The above tables illustrate examples of the sensitivity of various elements in the highway infrastructure to climate change. It shows that for both roads & bridges the major climate change threats are increased rainfall and intensity of rainfall which result in high monsoon floods, riverine floods and flash floods. For large bridges, very high temperature variations will be a threat to the viability of expansion joints and bearings.

The table below provides interpretation of exposure for different road and bridge assets to the climate threats identified for Banke district. This general interpretation can be used along with

consideration of the relative magnitude of the climate change threat at the target system site to assess the exposure of the assets of the target system.

The highway infrastructure in Banke District will generally, depending also on upstream catchment area and topography, have a High or Very High Exposure to climate change.

Type of Asset	Climate Change	Effect of Threat	Exposure
Large bridge on large river	Increase in max. temperature	Increase in expansion of deck – more stress on joints and bearings	Low to Medium
	Increase in wet season flow	Increased velocity of flow increases likelihood of scour to foundations	High to Very High
		Increased height of flood threatens stability of bridge deck and causes erosion of approach roads	Medium to Very High
		Increased sedimentation reducing clearance under bridge	Medium to Very High
Smaller bridge on smaller river	Increasing risk & severity of flash	Increased velocity of flow increases likelihood of scour to foundations	Medium to Very High
	floods during wet season	Increased height of flood threatens stability of bridge deck and causes erosion of approach roads	Medium to Very High
Pipe culverts & causeways on roads crossing watershed	On hill roads - increasing risk & severity of flash floods during wet season	Increased velocity of flow threatens to wash out pipe/ causeway & headwalls	High to Very High
	On flood plain roads - increase in wet season flow	Increase volume of flow threatens to wash out pipe/ causeway & headwalls	High to Very High
Hill road crossing watershed on sloping ground	Increasing risk of landslides	Road blocked or totally destroyed	Medium to Very High
Hill road running along valley	Increasing wet season flow	Road eroded by height & high velocity of flow	High to Very High
bottom adjacent to river	Increasing risk & severity of flash floods		
	Increasing risk of landslides	Road destroyed as erosion to toe of hillside causes landslide	
Road crossing flood plain	Increasing wet season flow and water levels	Road overtopped by flood water and pavement/ embankment destroyed	Medium to Very High

Table 12: Interpretation of climate change threats and exposure for road and bridge assets

IMPACT

The impact of extreme weather event on an asset is a function of the Sensitivity and the Exposure and can be found by considering the Climate Change Impacts Matrix given in Fig. 3 and interpolating between the value of Sensitivity and the value of Exposure to give a value for Impact.

The value for Impact obtained by using the Impacts Matrix should be judged from a practical engineering point of view and if considered incorrect then the values used for Exposure and Sensitivity should be revisited. In particular, for road infrastructure, the value for sensitivity is very difficult to determine without carrying out detailed condition surveys for the particular asset under

review. If sufficient design detail is unavailable, or the ground conditions difficult to judge, then an expert judgment of Sensitivity needs to be made and clear notes made justifying the decision.

ADAPTIVE CAPACITY

Evaluating the Adaptive Capacity of the Department of Roads in a District is not a simple task. Baseline assessments including consultations and site visits have shown that the Nepalgunj Division of DoR which is responsible for strategic roads and bridges in the Banke District has:

- Extensive experience in design and construction of roads and bridges;
- Sound financial resources;
- Sufficient trained and skilled man power available for design and construction of bridges;
- Adequate management system; and
- Good ability to respond promptly to disasters.

However in the baseline assessments (see Baseline Assessment Report for the Banke District) for the district it was also observed:

- a) Approved Budget funds are not released on time;
- b) Programmes are not approved on time;
- c) Very low bids are submitted by the contractors; and
- d) Contractors receive mobilization advance but do not execute the work on time.

DoR has shown it is able to respond rapidly to emergencies where road links are disrupted. However the ability or preparedness of DoR to respond to possible future threats to the road infrastructure has yet to be demonstrated.

The above findings indicate that the Adaptive Capacity of the DoR Division offices is "High"

VULNERABILITY SCORING: Based on the impact and adaptive capacity assessments, the vulnerability of the asset against the climate change threats is estimated using the guiding Vulnerability Matrix as provided in Fig.3.

7.3 VULNERABILITY ASSESSMENT OF ASSETS

SELECTION OF ASSETS

In general five assets were covered in each district in baseline report. Out of five, two assets, which are in more vulnerable condition, are selected for VA and AP in all districts except Dolakha. In Dolakha, only one asset is selected. Their list is given in Table 13.

Districts	Assets	Risks/Vulnerability
Panchthar	Landslide at Amarpur	It is located along Mechi Highway at a distance of 49 kilometer from Phidim (towards Taplejung side). During pavement construction, the contractor excavated roadside hill slope for gravels and crushed stones. After excavation, the hill slope became highly unstable resulting frequent landslides and road closure.
	Hengwa Khola Bridge.	It is a multi span bridge along Mechi Highway and is located at a distance of 9 kilometer from Phidim (towards Taplejung side). The gradient of the river at the bridge site is high. There is high vulnerability to damage of the bridge pier by boulder impact during high flood.
Dolakha	Charnabati Bridge and	Several large scale structures are constructed for protection

Table 13. List of Assets for Vulnerability Assessment

DOR & MOSTE | Mainstreaming Climate Change Risk Management in Development Strategic Road Network Sector Adaptation Plan Framework for Guidelines: Synthesis Report

Districts	Assets	Risks/Vulnerability			
	approach roads.	of bridge and approach roads. This is one of the most expensive protection works along Lamosngu-Jiri Road. Such expensive works are not constructed for protection of roads and bridges in other parts of the country as well.			
Kathmandu	Road Widening on Nagdhunga-Pipalmod Road Section	Road section between Nagdhunga and Pipalmod (total length of widening=1.89 km). This is the busiest section of all the roads (excluding city roads) in Nepal. DoR has upgraded this road section several times in the past. At present DoR is widening above road section where the traffic jam is very high.			
	Bagmati Bridge along Arniko Highway at Tinkune	The bridge was constructed in seventies by Chinese Government. It is multi-span RCC bridge on pile foundation. Due to heavy scouring, about 2-3 m top sections of the pile are exposed at all piers. If appropriate measures are not adopted timely, the bridge may collapse any time.			
Chitwan	Lothar Bridge	Due to heavy siltation, the vertical clearance of the bridge which was 8m during construction in 1977 is reduced to 2.5m. The bridge may be washed away if timely appropriate measures are not adopted.			
	Landslide Protection works at Mauri	Landslide Protection works at the hill slope of Narayanghat- Mugling Road near Mauri Bridge. Several check dams are constructed at upstream to protect road and bridges from debris, which is unique and successful.			
Myagdi	Beni-Pairothapla Road Section at Bhirkate (km 17)	The road was severely by Kaligandaki River. In July 2012, Sunari Khola which joins the river at km 17, deposited large amount of debris at right bank. Due to this, the river change its course towards left bank and severely damaged the road. At present DOR is rehabilitating this road section.			
	Under construction bridge across Lasti Khola	The contractor had erected all the formworks and had placed all the reinforcements and was ready to concrete the superstructure within few days. In the mean time an instantaneous flood washed away all the formworks and reinforcements			
Mustang	Road damage at Marpha (km 72).	In July 2013 there was extensive rain at/ around Marpha area. The heavy rain caused flooding in Podkyu Khola. The flood washed away the road as well as deposited large amount of debris. The incident was very unique because high rainfall is rare in Marpha area. Such incident will be more with CC and should be properly studied.			
	Road erosion at Tukuche (km <i>65)</i>	About 1.5 kilometer of Beni-Jomsom Road is located very near to right bank of Kaligandaki River. The river is extensively eroding the bank and at one location it has washed away 40m long road section. This issue is very important as substantial road length falls under this threat. With climate change this threat will aggravate.			
Banke	Nepalgunj-Baghouda Road	About 500 m long section of approach road at left bank of Rapti Bridge was severely damaged by flood. Although DoR constructed several cross drainage structures to protect the road, the damaging effect is still not controlled.			
	Dyke at Agaiya	Department of Irrigation has constructed an intake at Rapti River for Sikta Irrigation Project at Agaiya, a small settlement along MRM. The project constructed about 300 m dyke at right bank to protect the road from increased water level.			

DOR & MOSTE | Mainstreaming Climate Change Risk Management in Development Strategic Road Network Sector Adaptation Plan Framework for Guidelines: Synthesis Report

Districts	Assets	Risks/Vulnerability
Achham	Landslide at Tashi (km 9+920)	The hill slope of the road is very fragile. Due to this, landslides and road closure are common. The hill slope can be stabilized if appropriate measures (breast wall, drainage management, bio-engineering etc,) are adopted.
	Road erosion at km 11+ 900	There was a heavy flood on Budhiganga River on June 2013. The flood severely damaged about 60m long section of the road and is endangering the stability of 200m long section at the same location. If appropriate measures are not adopted timely, substantial road length will be washed away and will deprive Bajura District of road link.

VULNERABILITY ASSESSMENT OF ASSETS

In total vulnerability assessment of 15 assets in all eight districts was carried out. Out of them 3 assets are located in terai, 2 in higher mountain/lower Himalaya (Mustang), 2 in Kathmandu Valley and the rest in mountains. The vulnerability assessment summary of the assets is presented in Annex III.

8 ADAPTATION PLANNING FOR TYPICAL ASSETS

8.1 **OBJECTIVES**

The main objectives of the adaptation planning are:

- To provide DoR with a methodology for identifying elements which are susceptible to the increasing threat of extreme weather events caused by climate change within the system;
- To identify which particular threats may affect different elements within the system;
- To provide a means of prioritising which are the most sensitive elements to any particular threat; and
- To provide a programme for monitoring and maintaining the system so that vulnerable elements are identified in time for action to be taken before serious damage occurs.

8.2 ADAPTATION PLANNING PROCESS

The Adaptation Planning process is defining adaptation priorities and plans for the most vulnerable assets and areas based on VA. The major aspects considered in the AP are presented below.

SIGNIFICANCE OF IMPACTS

Significance of the impact is assessed according to the degree of likelihood and seriousness as given in Table 14.

	Seriousness of Impact							
ct		Very Low	Low	Medium	High	Very High		
impa	Very High	Medium	Medium	High	Very High	Very High		
of	High	Low	Medium	Medium	High	Very High		
od ing	Medium	Low	Medium	Medium	High	Very High		
iho	Low	Low	Low	Medium	Medium	High		
Likel happ	Very Low	Very Low	Low	Low	Medium	High		

Table 14: Significance of Impacts

Very High = Extreme impact requiring immediate action;

High = High impact requiring additional research or some immediate action;

Medium = Moderate impact that are likely to benefit from adaptation measures;

Low or Very Low = Low impact that can be dealt with as and when they happen or they are considered acceptable should they happen.

LIKELIHOOD

Likelihood is the chances of an impact occurring and resulting threat due to the particular impact.

For the purpose of the study, likelihood of impact occurring is classified in the following five categories:

Very Low:	< 25 %;
Low:	25-50 %;
Medium:	50-75 %
High:	75-90 %

Very High: 90-100%

SERIOUSNESS

Following criteria are major influencing factor for deriving the degree of seriousness.

- Loss of life
- Loss of property i.e. destruction of property
- Damage to property
- Loss of productivity and income
- Impeding of function

ADAPTATION PRIORITIES

Adaptation priorities are fixed according to feasibility of action and effectiveness in dealing with impact and are assessed as per following table.

	Effectiveness in Dealing with Impact								
		Very Low	Low	Medium	High	Very High			
tion	Very High	Medium	Medium	High	Very High	Very High			
of Ac	High	Low	Medium	Medium	High	Very High			
ibility	Medium	Low	Medium	Medium	High	Very High			
easi	Low	Low	Low	Medium	Medium	High			
<u> </u>	Very Low	Very Low	Low	Low	Medium	High			

Table 15: Assessment of adaptation priorities.

FEASIBILITY OF ADAPTATION OPTIONS

The major factors for assessing the feasibility of options are:

- Is the action technically feasible without additional R&D or does action requiring some development?
- What is the time required to implement can it be implemented immediately or does it require long surveys and design time
- What is its cost how expensive is the measure? Is government budget available?
- What are the capacities of community/user group (e.g. commitment, labor, materials)?
- What are the capacities of government to support the action (e.g. skills, institutional arrangements, equipment)?

EFFECTIVENESS

The degree of effectiveness of the adaptation options is found out as outlined in Table 16.

	Effectiveness in Dealing with Impact					
	Very	Low	Medium	High	Very High	
	Low					
Can the impact be avoided	Not at		Partially		Yes	
completely?	all					
To what extent will deal with	< 25 %	25- 50	25- 50 %	25- 50	100 %	
impact?		%		%		
How long will the adaptation	1 year	2 years	2-10	10-20	Permanent	
measures last?			years	years		

Table 16: Factors that influence the effectiveness of Adaptation Options

8.3 PRIORITIZATION AND PHASING OF WORKS

Prioritization is one of the very important aspects of adaptation planning. In general prioritization is done according to the followings:

- Loss of lives (The works which can save lives should get highest priority);
- Traffic closure (Traffic closure especially on busy or important roads should be avoided by carrying out repair/rehabilitation/reconstruction of damaged works);
- Saving high reconstruction cost (If minor remedial works can save substantial reconstruction cost, such works should also get high priority);
- Repair and maintenance of road drainage structures;
- Bank protection works (which are protecting lives and properties) etc.

After work prioritization is fixed, the works should be carried out in different phases. For the purpose of this study the work phasing is divided into the followings:

- Regular (R); throughout the year
- Immediate (I); generally within 6 months
- Short (S), medium (M) or long term (L) (2, 5, 10, 15 years or more)

Following the above procedures, a selection of the types of adaptation responses recommended for different types of assets identified in this report is summarized in Table 17. A detailed assessment of the adaptation options for the selected assets is presented in Annex IV.

Table 17: Summary of Adaptation Options for Different Assets

Asset	Physical Threat	Component	Climate Threat*	Impact	Adaptation options
Sanfebagar to Martadi Road at Tashi ACHHAM	Instability of hillside	Hill Slope	IIDR INRE ILE	The intensity and frequency of slope erosion and landslides events will substantially increase.	Construct 3m high breast walls; provide surface drains and bio- engineering.

Asset	Physical Threat	Component	Climate Threat*	Impact	Adaptation options
		Road	IIDR INRE IDRW	Higher moisture content at sub- grade for longer duration causes pavement failure.	Repair and clean side drains. Provide additional measures to drain off the water from the road. Reconstruct road pavement after completing slope stabilization measures.
	Road embankment eroded & road cut	Road embankment	IIDR INRE IWSF	The road embankment collapsed at several occasions in the past during high flood. The increase in flood will accelerate this process.	Reconstruct road embankment and provide stone rip rap or gabion mattress at upstream side.
Nepalgunj to Baghouda Road BANKE		Bank protection works	IIDR INRE IWSF	Bank protection works were frequently damaged by the flood in the past. With increase in flood the damage will be more severe and frequent.	Repair/reconstruct the damaged walls providing adequate scour protection measures
		Cross Drainage Structures	IIDR INRE IWSF	Existing cross drainage structures are not sufficient to pass the current discharge during high flow. With increased flow, this problem will become more severe and probability of damage to those structures will be high	 Complete construction of cross drainage structures (Baily Bridge, concrete causeway, pipe culvert). Repair/new construction of bank protection works
Bagmati Bridge on Arniko Highway, Tinkune KATHMANDU	Failure of Bridge	Pile Foundation	IIDR INRE IWSF	Foundation failure due to increase in scour depth	Issue of directives (focusing on encroachment and sand mining) and placement of watchman to prevent further scouring and provide scour checking structures around the pile foundation.
		Bank Protection Wall	IIDR INRE IWSF	Failure of wall due to increase in	Repair/reconstruct the damaged walls

Asset	Physical Threat	Component	Climate Threat*	Impact	Adaptation options		
				scouring and water current.	providing adequate scour protection measures.		
	Erosion of road by river Budhiganga	River Bank	IIDR INRE ILE	Bank erosion will be more severe due to increase in wet season flood volume.	Construct spurs, groynes etc. to divert the flow towards left bank (away from the road)		
Sanfebagar to Martadi Road ACHHAM		Road	IIDR INRE IDRW	Higher moisture content at sub-grade for longer duration causes pavement failure.	Repair and clean side drains. Provide additional measures to drain off the water from the road if required. Reconstruct road pavement after completing slope stabilization measures.		
		Retaining walls	IIDR INRE ILE	Bank erosion will be more severe causing more damage to walls due to increase in wet season flood volume.	Construct spurs, groynes etc. to divert the flow towards left bank (away from the road)		
	Failure of bridge due to sedimentatio n due to debris flow	Bridge Superstructure	IIDR INRE IWSF	Additional siltation may cause bridge collapse.	Clear debris (siltation) from the bridge site. Adopt measures to reduce land erosion at catchment area by constructing check dams, bio-engineering and discouraging cultivation.		
Lothar Bridge on East – West Highway CHITWAN		Bank protection works	IIDR INRE IWSF	Frequency and magnitude of damage to bank protection works will be more.	Repair/reconstruct the damaged walls providing adequate scour protection measures		
		Landslide/Land Erosion at Catchment	IIDR INRE IDRW	Siltation process is still very active due to land erosion at catchment areas. If it is not controlled, increasing rainfall trend will accelerate the process.	Construct check dams, plant trees and discourage cultivation.		
Charnabati Bridge & Approach Roads on Takakoshi – Jiri Road DOLAKHA	Failure of bridge and approach roads	Bailey Bridge across Charnabati Khola.	IIDR INRE IWSF	Destruction of an abutment & failure of bridge	 Carry out detailed condition survey of bridge & abutments Carry out any repair works found by condition survey Carry out condition 		

Asset	Physical Threat	Component	Climate Threat*	Impact	Adaptation options
					survey after every rainy season
		Check Dams, Concrete Aprons & Side Walls	IIDR INRE IWSF	Failure of cracked concrete apron slab Consequent failure of check dam & progressive further failures downstream	 Reconstruct cracked apron slab Condition survey to all protection works after every rainy season Carry out works as identified by condition survey
		Bio Engineering and Drainage works on downstream left bank	IIDR INRE IWSF ILE	-Damage or blockage to surface water drainage system -Damage or blockage to sub- surface drainage system	 Carry out detailed condition survey of drainage system Carry out works required as identified by condition survey
	Road cut by landslide	Hill slope	IIDR INRE ILE	The debris behind the check walls have already started to overtop. If further erosion occurs, large amount of debris will move to the road.	Clear the debris
Mugling to Narayanghat		Gabion check dams	IIDR INRE ILE	Land erosion has started to occur at several other locations.	Provide check walls, surface and sub- surface drains and bio- engineering at the whole slope.
Road at Mauri CHITWAN		Mauri Bridge and Narayanghat- Mugling Road	IIDR INRE ILE	The local people are cultivating at the top of hill slope. With increase in rainfall, more water will penetrate through the cultivated land and will increase the moisture content of the whole slope. This may cause collapse of the road side breast walls.	Encourage the local people to shift the cropping pattern (encourage plantation which require less water).

*Abbreviation used in tables

IIDR = Increase in intensity and duration of rainfall

IWSF = Increasing wet season flow

INRE = Increasing number of rainfall events ILE = Increasing landslide events

IDRW = Increasing duration of road pavement wetting

9 CONCLUSIONS

9.1 BASELINE REPORTS

• Condition of Existing Strategic Road Network Infrastructure

The visit by the Project Road & Bridge Engineer to all eight Districts allowed a fairly comprehensive survey of the condition of the SRN infrastructure to be carried out. **Annex III** gives a summary of his findings.

His observations confirm that the overall condition of the SRN network is poor with a significant backlog of and periodic maintenance and rehabilitation. A road network where there is a backlog of maintenance (or maintenance deficit) is more susceptible to damage from any weather event. The infrastructure is therefore Vulnerable to the threats of severe weather predicted by the Climate Threat Profiles. Any work to reduce the maintenance deficit will reduce the vulnerability of the road network and is therefore an Adaptation.

• Annual Road Maintenance Plan

The introduction of the requirement that all 25 Divisions of DoR draw up an Annual Road Maintenance Plan (ARMP) should enable the maintenance of the SRN to be better managed. It is important that the ARMP addresses the issue of prioritising the SRN in each Division and District so that the maintenance deficit is first addressed on the most important roads.

• Institutional Issues

The comments entered as Issues in the Baseline Reports were provided by officers in the Districts. It is clear from these comments that Governance is a major problem.

- Budgets are insufficient and not provided on time
- Programmes are not approved on time
- Resources are diverted from managing and maintaining the SRN to construct roads which are not the direct responsibility of DoR
- Limited technical capacity
- Inexperienced contractors who submit low bids and do not complete the work on time and to the required quality
- There is a very limited amount of information kept about the design and construction of bridges, retaining wall, cross-drainage etc and without this information it is extremely difficult to assess the vulnerability of such structures to extreme weather conditions.

The capacity for DoR in the Divisional and District Offices to manage and maintain the SRN effectively and to respond to critical events is severely limited by the difficulties set out above. The increasing risk of severe disruption to the road network because of extreme weather events brought about by Climate Change makes the strengthening of the capacity of these offices a prime objective.

9.2 CLIMATE THREAT PROFILES

The Climate Threat Profiles predict that extreme weather events will become more frequent and more severe in all the eight Districts considered. The magnitude of these events will vary from District to District and also within each District.

9.3 VULNERABILITY ASSESSMENT REPORTS

The Vulnerability Assessments carried out on the selected assets in the eight Districts show that they all have a high or very vulnerability to extreme weather events. These events may be increased rainfall, more frequent storms with greater intensity rainfall or high river flows caused be increased rainfall over the catchment area upstream.

However, the limitations in predicting accurately the magnitude and likelihood of an extreme event at a particular location mean that in the short term it is not possible to assess the vulnerability of any asset with any confidence.

9.4 ADAPTATION PLANNING REPORTS

The Adaptation actions set out in the Adaptation Planning matrices completed for the selected assets are nearly all actions which can be classified as work to be carried out under either routine, periodic maintenance or rehabilitation programmes.

With the limited resources available at District level the Adaptation Planning process should be used to prioritise the maintenance interventions.

9.5 COMMENT

- The poor condition of the fabric of the road network makes it vulnerable to damage and failure from relatively minor weather events. Efforts to improve the condition of the roads will have an immediately beneficial effect in that it will reduce the likelihood of damage from all weather events and reduce the cost of transporting goods and people by increasing traffic speed and reducing wear and tear on vehicles.
 - In the short to medium term the elimination of the maintenance (adaptation) deficit must be considered the top priority.
- The lack of the necessary information to allow more precise determination of the sensitivity of an asset together with the uncertainty over the likelihood and magnitude of any climate related threat means that making a commitment to major expenditure on a single intervention is very risky¹.
 - Reconstruction or costly protection of an existing element in the road infrastructure should only be contemplated if there is strong evidence of likely failure of the element.
- The extensive nature of the SRN is that it extends over the whole country in a network of roads linking centres of habitation or production which makes it particularly vulnerable to any extreme weather event. The cutting of a road link at any place along its length disrupts the whole link and causes hardship and economic loss to the communities at both ends of the link. At present, it is not possible to predict where along a link an event may occur which will disrupt the link because: 1. It is not possible to predict where along a link a weather event will take place; 2. The information regarding which are the most vulnerable sections of the link is not available.
 - Vulnerability Assessments should be carried out along the most important road links in order to determine which sections are most vulnerable to extreme weather events¹
- In the short to medium term it must be accepted that severe weather events will disrupt the SRN without warning at locations which cannot be predicted. It is therefore necessary to increase the ability to respond to major disruption caused be extreme weather events.
 - Increase the technical and physical capability of the Department to respond to disruption caused by severe weather events

10 REFORMS ON SECTOR ISSUES

10.1 ROUNDTABLE DISCUSSIONS

During roundtable discussions the following areas were identified as possible entry points for mainstreaming climate resilience into DoR activities:

- Management procedures of DoR
- Project Implementation Plan
- Annual Road Maintenance Plan (ARMP)
- Highway Management Information System
- Environmental Management Guidelines
- Design Standards
- Project Designs

10.2 PROPOSED REFORMS

1. Institutional

1.1. Nepal Road Sector Assessment Study

1.1.1.1 paragraph 12, Safeguards, a clause stating that the possible risks associated with the threats from Climate Change should be assessed in all areas of DoR's responsibility.

2. Policies & Plans

2.1. Project Implementation Plan

2.2. Annual Road Maintenance Plan (ARMP)

- 2.2.1. Prioritisation of Maintenance Procedures???
- 2.2.2.Records of Road Closures

Collate existing procedure to record road closures so that, over time, those sections of road which are more vulnerable to extreme events ("hot spots") are identified.

2.3. Highway Management Information System (HMIS)

2.3.1.Condition Surveys

Increase the scope of the surveys to include more details about condition of structures, stability of slopes above and below road and commence to include vulnerability assessment of sections of road which are considered to be at risk.

3. Guidelines, Standards & Manuals

3.1. Environmental Management Guidelines (Geo-Environment Unit 1999)

3.1.1.paragraph 2.1 Scope, amend Clause 6 to "provision of suitable drainage facilities utilising discharge to natural drainage channels in conjunction with erosion protection features <u>having taken into account the predicted increase in extreme rainfall events</u> <u>over the liftime of the project due to Climate Change"</u>

3.2. Environmental Assessment

3.2.1. Initial Environmental Examination (IEE)

In the Terms of Reference issued to the Consultant drawing up the IEE include:

- In section titled "Objectives" amend the following paragraphs:
 - document key physical, <u>meteorological</u>, biological, socio-economic and cultural baseline conditions of the project area
 - identify, predict and assess the adverse and beneficial environmental impacts of the project, *having taken into consideration the effects of Climate*

<u>Change</u>, in terms of magnitude, extent and duration during the project construction phase including operation phase

3.2.2.Environmental Impact Assessment (EIA)

In the Terms of Reference issued to the Consultant drawing up the EIA include:

- Amend the paragraph setting our the Rationality for Conducting EIA to:
 - The rationality for conducting EIA is to determine whether the implementation of the project will result in adverse environmental impacts such as the triggering of landslides, soil erosion and depletion of existing forest condition, displacement of local people etc. <u>having taken into account the effects of</u> <u>Climate Change as calculated by DHM</u>
- In the Scope for the Preparation of the Report under Adverse Issues:
 - Para. APC3 Physical Impacts due to slope instability, landslide, erosion of hill slopes along road alignment <u>taking into account the increase in total rainfall</u> <u>and the intensity of rainfall due to Climate Change</u>
 - Para. APC4 Impacts of River flow regime and river environment <u>taking into</u> <u>account the increased flows brought about by Climate Change as calculated by</u> <u>DHM</u>

3.2.3. Design Standards

Latest prediction of climate change effects obtained from DHM and used in assessing:

- Bridges
 - Location
 - Maximum flood discharge for a given return period
 - Type of Depth of Foundation
 - Total Span & Number of Piers
 - Bridge Deck Level
 - River training works at approaches to bridge
- Roads
 - o Alignment
 - Cross Drainage
 - Side Drainage
 - In Nepal Road Standards (2070) paragraph 13.8 Road Drainage sub-section h, amend clause to read "For calculating design discharge on roadside drains following return periods should be taken. <u>The intensity of rainfall</u> <u>should be found using the latest rainfall return period curves allowing for</u> <u>the effects of Climate Change as provided by DHM"</u>
 - Retaining Walls & Toe Walls
 - Stability of roads crossing unstable ground
 - Extent of bio-engineering required

3.2.4. Project Design

In preparing designs for new projects the increased threats brought about by Climate Change as calculated by DHM should be taken into account when assessing:

- Stability of slopes
- Design of cross drainage
- Design of side drains

- Viability of road alignments constructed along river valleys adjacent to rivers subject to flash floods
- Road embankments constructed across flood plains

¹ Ref. Road Vulnerability Map as proposed in Fig 2 on page 20 of ADB publication "Climate Proofing ADB investments in the Transport Sector: Initial Experience".

ANNEX I: MAP OF STRATEGIC ROAD NETWORK

ANNEX II: CONDITION OF EXISTING SRN INFRASTRUCTURE

1. Condition of Existing Infrastructures

During the visit by the National Roads and Bridges Engineer the following observations can be made regarding the resilience of the Strategic Road Network Infrastructure in the project districts.

1.1 General Observations; applicable to all districts.

- Roadside drains are inadequate, extensively damaged and poorly maintained;
- Cross road drainages structures are inadequate, extensively damaged and poorly maintained;
- Much of the road network is constructed across steep slope which are prone to landslides in hill areas.
- Several road sections in terai area are located at flood prone areas and are frequently damaged by flood;
- The road pavements are in poor condition making them liable to further damage under severe weather condition;
- The records of the condition of existing infrastructure are inadequate making planning of periodic or emergency maintenance difficult;
- The design drawings of road, bridges and structures are not available making assessment of their long term stability difficult to determine;
- Condition of several district roads is very poor. Due to absence of basic structures (cross drainages, retaining wall, gravelling etc.), the roads are not passable during rainy season. In some instances, the road is blocked by landslides for a quite long time as the DDCs are not able to clear them due shortage of fund.

1.2 Specific Observations

Strategic Roads

District	Findings/Observations							
Panchthar	 DoR has not still not stabilized old landslides; DoR has still not adopted adequate measures to stabilize the Amarpur Lanslide (along Mechi Highway) which occurred about four years ago. It is still in vulnerable condition. 							
	Gabion bank protection works at bridge sites are damaged;							
	Gabion bank protection works at Kabeli and Hewa Khola Bridge sites are damaged at several locations.							
	Extreme flooding may damage Hewa Khola Bridge pier;							
	• DoR has constructed minor pier protection works to protect the pier of Hewa Bridge. These works are not sufficient to protect the bridge from big flood.							
	Tamor Bridge may be damaged if there will be heavy landslide at right approach road;							
	• The right bank at the Tamor River near the bridge site is steep and in close proximity to the bridge. While constructing approach road, huge cutting is made at this location. If the cut slope fails, there is a high probability of bridge damage.							

District	Findings/Observations
Kathmandu	 There is heavy encroachment and sand mining at all bridge sites. These activities caused heavy scouring of bridge foundations; The Bagmati Bridge at Tinkune collapsed due to heavy scouring. The other bridge at Tinkune is also suffering from extensive scouring. The bed level of the river is scoured by about 3-4m. The foundation piles are exposed and eroded. Pile reinforcements are visible and they are corroded. The bridge may collapse any time if protection measures are not adopted timely. The bridge bearings are in poor condition;
Chitwan	 Bridges in the district are undergoing heavy siltation. It is endangering the bridge stability and causing river overflow at several locations. Heavy siltation at the Lothar Bridge site is endangering the stability of the structure. The overflow at Riu Khola Bridge site frequently damages the left approach road.
	 The debris at the back of check dams have started to overtop the walls. The debris are not cleaned for a long period; At the hill slope near Mauri Bridge DoR/DWIDP has constructed several gabion check dams to protect the road from landslides. At present the check dams are overtopped by debris. If appropriate measures are not taken, the debris will slide to road side causing traffic blockage.
	 Several rivers in the district are changing their regime/course; The Badarmudhe Khola in Madi is changing its course very rapidly. The Khola, at present, does not flow through the bridge but along the left bank.
Myagdi	 Kaligandaki River has washed away the Beni-Jomsom Road at several locations; Beni-Jomsom Road which is the only strategic road in the district was severely damaged by Kaligandki River at Bhirkate (km 17) and Timure Bhir (km 16).
	 Incidence of flash floods has become more frequent in the past few years; The flash flood in June 2013, washed away formworks and reinforcements of the under construction bridge across Lasti Khola.
Mustang	 There is substantial increase in rainfall intensity and duration in the last few years; About 250 m long road section at km 72 was washed away by the heavy flooding in Podkyu Khola in July 2013. The flood also deposited large amount of debris at the road side and surrounding areas. Kaligandaki River is eroding the Beni-Jomsom Road at several locations;
	Kaligandaki River washed away 40m long road section at Tukuche (km 65) and has eroded at several other locations.

DOR & MOSTE | Mainstreaming Climate Change Risk Management in Development Strategic Road Network Sector Adaptation Plan Framework for Guidelines: Synthesis Report

District	Findings/Observations
Banke	Rapti River is causing heavy damage at frequent interval;
	• About 20m long section of approach road of Rapti Bridge along Nepalgunj-Bagauda Road was totally washed away by 2012 flood. The flood also severely damaged adjacent road sections;
	The Rapti River is extensively eroding the left bank near the Rapti Bridge and has damaged protection works;
	The condition of almost all drainage structures is poor due to lack of maintenance;
	• The culvert at km 8+050 of Nepalgunj-Guleria Road is suffering from deterioration of substructures and scouring. This is the result of
	inadequate maintenance. The condition other structures is also similar.
Achham	Budhi Ganga River is extensively eroding the right bank where the Sanfebagar-Martadi Road is located;
	• About 200m long road section of Sanfebagar-Martadi Road at km 12 is highly vulnerable to erosion by Budhigandaki River. Out of 200m, the condition of 60m long section is very critical. If appropriate measures are not adopted, the river will wash away the above road section;
	The landslides frequently block the Sangebagar-Martadi Road;
	• Landslides at km 9+920 and 14+500 along of Sanfebagar-Martadi Road along Sanfebagar – Mangalsen Road are frequently blocking the traffic.
	The measures which were adopted to prevent the landslides are inadequate;
	Budhiganga River is eroding the concrete pier of motorable bridge at Sanfebagar;
	• Due to extensive erosion, the reinforcements of the lower portion of one pier of the Budhiganga Bridge at Sanfebagar are exposed. If the
	problem is not corrected timely, the repair cost could be very high.

ANNEX III: VULNERABILITY ASSESSMENT OF ASSETS

The matrix below sets out the Vulnerability interpretation process for the selected assets.

Abbreviation used in tables

- IIDR = Increase in intensity and duration of rainfall
- IWSF = Increasing wet season flow
- IDRW = Increasing duration of road pavement wetting

- INRE = Increasing number of rainfall events
- ILE = Increasing landslide events
- VL = Very low; M = Medium; L = Low; H = High; VH = Very High

Asset	Physical Threat	Component s	Climate Threat	Interpretation of Threat	Exposure.	Sensitivity.	lmpact	Adaptive. Capacity	Vulnerability	Comments	
l Sanfebagar to	Instability of hillside	Hill Slope	IIDR INRE ILE	Intensity and frequency of landslides will increase.	VH ¹	VH ²	VH	H ³	H	The hill slope can be stabilized by constructing breast wall, drainage structures and bio-engineering.	
Martadi Road ACHHAM		Road	IIDR INRE IDRW	Weakening of the sub-grade due accumulation of water for longer period.	H ⁴	M⁵	Н	H ³	Μ	Additional drainage structures (side drains and cross drains) should be provided.	
		Retaining walls	IIDR INRE ILE	Pore pressure and flood impact at bank protection wall will increase.	VH ⁶	VH ⁷	VH	H ³	H	The bank protection walls are in very poor state. They will fail if adequate measures are not adopted.	
1. Exposure of (fragile) hill slope is very high to increase in rainfall intensity and duration.											
2. The scale of landslide will be high. The road will be closed for few days. There will some loss of lives and properties											
3. The ada	3. The adaptive capacity of DoR Division Road Office is High ; see section 2.2.4.										
4. The exp	osure of damag	ed road (paveme	nt completely	destroyed) to increased rainfall will b	be high.						

5. The road will be severely damaged but it will not be closed. Vehicles will face difficulty to pass through the damage section. Reconstruction cost could be high.

6. The retaining walls are located very near to river course. Hence it is very highly exposed to increased flood.

7. The quality of wall is not good. Moreover, scour protection measures are not provided. Reconstruction cost could be high.

	Failure of	Road	IIDR INRE	Threat to previously built	VH^1	VH ²	VH	H ³	Н	The road embankment is located at very
II	Road	embankm	IWSF	embankment from increased						near to the river. It was damaged
	Embankm	ent		flows.						several times in the past. The scale of

Nepalgunj to Baghouda	ent									damage due to 2012 flood was very high.
Road BANKE		Bank protection walls	IIDR INRE IWSF	Higher possibility of failure of bank protection works from increased flows.	VH ⁴	VH⁵	VH	H ³	Н	The exposure of the bank protection works is very high as they are located very near to the water current. The protection works were damaged several times in the past.
		Cross drainage structures	IIDR INRE IWSF	Higher probability of damage of cross drainage structures due to increase in flood volume.	VH ⁶	H ⁷	VH	H ³	Н	Existing cross drainage structures are not sufficient to pass the water during high flood and hence they are highly vulnerable to increased flood volume.

1. The road embankment is located at highly vulnerable to flood. It was washed away several times in the past.

2. The embankment is not protected (by gabions or stone rip rap). The embankment collapse will cause road closure in rainy season and will affect large number of people residing at the southern parts of the district.

- 3. The adaptive capacity of DoR Division Road Office is **High**; see section 2.2.4.
- 4. Bank protection works are very near to the main river course. They were damaged several times in the past;
- 5. Bank protection works are constructed without proper design. Similarly, launching aprons are not provided in many cases.
- 6. Cross drainage structures are directly affected by the flood.

7. The quality of structures is good but their capacity is inadequate.

III Bagmati Bridge on Arniko	Failure of Bridge	Pile Foundation	IIDR INRE IWSF	Scouring effect will increase. It may cause bridge collapse. Bagmati Bridges at other two locations have already collapsed.	VH ¹	VH ²	VH	H ³	Н	The VA matrix shows that the vulnerability is "High". But in actual, the vulnerability is "Very High" due to extreme importance of the bridge.	
Highway, Tinkune KATHMANDU		Abutments and Piers	IIDR INRE IWSF	Increased flood will cause additional water impact on piers and abutments	VH⁴	L	Н	H ³	Μ	Substantial damage to abutments and piers is not envisaged as the river does not carry big boulders and trees.	
		Bank Protection Wall	IIDR INRE IWSF	Damage to gabion protection walls are common. Increased flood will aggravate the scour making the walls further vulnerable.	VН ⁶	VH ⁷	VH	H	Η	Most of the bank protection walls in Nepal are constructed without scour protection measures. Similarly, their quality is also not maintained. These are the main reasons of for damage/ failure of gabion bank protection walls.	
1. As per the climate change threat profile, the peak monthly season flow will increase by 68 %. Such increase will cause further scouring. Moreover, the increased flood volume is restricted by constructing bank protection walls at both banks.											

Strategic Road Network Sector Adaptation Plan Framework for Guidelines: Synthesis Report

- 2. The sensitivity is very high as 2-3 m top section of piles are already exposed. The condition of the pile is also not good as reinforcements are exposed and they are heavily corroded.
- 3. The adaptive capacity of DoR Division Road Office is High; see section 2.2.4.
- 4. Abutments and piers of the bridge are directly hit by the water current.
- 5. Generally the RCC abutments and piers do not get damaged by water current forces which do not carry large boulders and trees;
- 6. The bank protection walls were frequently damaged in the past. With increase in flood volumes and the restricted waterway the failure rate will be more.
- 7. The quality of walls is not good. Moreover, they are not designed to take care of the scour (shallow foundation depth and without launching apron)

IV	Erosion of	Embankmen	IIDR INRE	Erosion will be substantially	VH ¹	H ²	VH	H ³	Н	The walls have started to fail at many
	road by	t &	IWSF	higher with increase in flood						locations because they are constructed
Sanfebagar to	river	protection		volume.						without scour protection measures.
Martadi Road	Budhigang	walls								Moreover their quality is also not good.
ACHHAM	а	Road	IIDR INRE	Probability of washing away	M^4	VH⁵	VH	H ³	Н	If the protection walls fail the road will
			IWSF	of road will be higher.						be washed away.

1. The right bank (where the road is located) was being eroded by the river in the past. With the shift of the river towards it, exposure of bank erosion / walls has substantially increased.

2. Banks and retaining walls are in very critical state at some locations. The quality of walls is not good.

3. The adaptive capacity of DoR Division Road Office is **High**; see section 2.2.4.

4. Exposure of road to increase in flood volume will be medium as it is protected by walls.

5. The sensitivity is very high because it is the only road providing link to eastern part of Achham District and whole Bajura District.

v	Failure of	Bridge		Overtopping of bridge by	VH ¹	VH ²	VH	H ³	Н	The vertical clearance of the bridge has
	bridge	Superstruct	IVVSF	nash nood.						reduced to 2.5 m from 8m in 35 years
Lothar Bridge	due to	ure								due to heavy siltation. The bridge may
on East –	sediment									collapse with further siltation. Although
West Highway	ation due									the "Vulnerability Assessment Matrix"
CHITWAN	to debris									shows that the vulnerability is only
	flow									"high" but in actual the vulnerability of
										the bridge is "catastrophic" due to its
										location.
		Bank	IIDR INRE	Damage to bank protection	VH^4	H⁵	VH	H ³	Н	The exposure of the bank protection
		protection	IWSF	works will be more.						works is very high as they are located
		works								very near to the water current.
		Approach	IIDR INRE	Probability of damage to	M ⁶	Η ⁷	М	H ³	М	Some sections of approach roads
		Roads	IDRW	approach roads will increase.						located near the river bank will be

DOR & MOSTE | Mainstreaming Climate Change Risk Management in Development

Strategic Road Network Sector Adaptation Plan Framework for Guidelines: Synthesis Report

											washed away. The road can be rebuilt		
											within short time.		
1. 7	1. The vertical clearance of the bridge has reduced to 2.5m from 8m in the last 35 years due to neavy siltation. The floba of 1993 and 2003 overtopped the bridge. With increase in												
flood, the damaging capacity of the river will substantially increase which may wash away the bridge. Several bridges in Nepal are washed away by flood.													
2. A	2. Although the construction quality is very good, the sensitivity of bridge has become very high due to heavy siltation. As the bridge is located along the most important section of												
t	the national highway its sensitivity is further increased.												
3. T	3. The adaptive capacity of DoR Division Road Office is High ; see section 2.2.4.												
4. B	4. Bank protection works are very near to the main river course. They were damaged several times in the past;												
5. S	5. Some bank protection works are properly designed (especially the dyke at right bank of downstream side) and some are constructed without considering the hydrological												
p	oarameters	s such as sco	our depth (launch	ing aprons ar	e not provided at many locations), w	vidth of	waterv	vay dur	ing high f	lood, HF	L etc. The quality of bank protection works at		
S	some locations is good whereas it is poor at several instances. Hence the sensitivity is considered as medium.												
6. B	Bank protec	ction works a	are constructed a	t both sides oj	f the river. The river will damage/was	h away	approa	ch road	ls in extrei	ne flood	condition only		
7. T	The quality	of approach	n road is good. Bu	t its sensitivity	is considered high due to its importo	ince.							
	Fa	ailure of	Bailey	IIDR INRE	Scour around the abutments	VH^1	M ²	VH	H⁵	Н	Previously constructed bridge has		
VI	b	oridge	Bridge	IWSF	will be more.						already collapsed. The existing bridge is		
	a	nd	across		Very high flood level may						also highly vulnerable to scour and		
Charnak	bati a	pproach	Charnabati		overtop bridge and wash						overtopping.		
Bridge	& r0	oads	River		away superstructures.	H ³	H^4	Н	н	н			
Approa	ach	•	Check	IIDR INRE	Threat of damage to	VH	VH ⁶	VH	H ⁸	Н	Almost all the protection structures		
Roads	on		Dams,	IWSF	previously built protection						were constructed more than 25 years		
Takakos	shi —		Concrete		works from increased flows						ago. Many structures are failing and		
Jiri Roa	ad		Aprons &		Threat of progressive collapse						DOR is rehabilitating them. Hence all		
DOLAK	НА		Side Walls		of protection works after	VН	M ⁷	VH	н	н	the protection works should be		
					failure of one element.						continuously assessed to save them		
											from increased rainfall and flood.		
		•	Bio	IIDR INRE	Increased possibility of	VH	M ⁸	VH	M ¹⁰	VH	The effectiveness of bio-engineering		
			Engineering	IWSF	failure of drainage works.						work increases with time as the planting		
			and	ILE	Increased likelihood of	VH	M ⁹	VH	М	VH	becomes more established. However		
			Drainage		landslides which destroy						the drainage works especially sub-		
			works on		approach roads.						surface drains require constant		
			downstrea								attention they may become less		
			m left bank								effective with time.		
		ľ	Retaining	IIDR INRE	Increased likelihood of	M ¹¹	VH^1	Н	H ¹⁴	М	If the erosion is not controlled the		
			Walls at	ILE	erosion and landslide on		2				landslides could progress up the hillside		
			right bank		downstream right bank.						and affect the approach roads on that		

DOR & MOSTE | Mainstreaming Climate Change Risk Management in Development

Strategic Road Network Sector Adaptation Plan Framework for Guidelines: Synthesis Report

					Possibility of landslides	M ¹¹	L ¹³	М	H^{14}	М	side.
					blocking flow of river and						
					causing erosion on left bank.						
1.	The expo	osure is very hi	gh because an ex	treme event o	ccurred in the past and CC will increas	se the p	robabili	ity of a	more extr	eme eve	ent occurring
2.	The sens	sitivity is mediu	im because the al	outments are v	well designed and constructed						
3.	The expo	osure is high ra	ther than very hig	gh because the	e threat of such an event is reduced b	y the ex	ctensive	upstre	am proteo	tion & fl	ood dissipation works
4.	The sens	itivity of the B	ailey Bridge is hig	h as the bridg	e bearings are not designed to withst	and suc	ch an ev	ent			
5.	The Ada	ptive Capacity	of DoR is conside	ered to be hig	h although this may change as the t	threats	from CO	C incred	ise. It is	clear the	nt DoR has some emergency funds available for
	extreme	events which	disrupt roads but	it is unclear w	hether the Adaptive Capacity for less	urgent	work is	as high			
6. /	A concre	ete apron upst	ream of the bridg	e is already b	adly cracked and is likely to break up	o under	extrem	e flows	Some o	f the tet	rapods constructed at the end of the protection
	works ho	ave been displo	aced; any further o	displacement	may affect the stability of the protect	ion wor	rks belo	w the lo	andslide p	rone are	a
7.	The likeli	ihood of progr	essive collapse is l	less because ti	he design & construction is of high qu	ality					
8.	DoR reco	onstructed a de	amaged check dai	m before the 2	2013 rainy season and it has withstoo	d the su	ubseque	nt high	flows		
9.	The bio-e	engineering dr	ainage works wer	re well constru	cted but the design did not take into	conside	eration t	he incr	eased thr	eat impo	used by CC
10.	The abili	ity of DoR to m	aintain and adap	t the bio-engir	neering and drainage works is not as	high as	for sim	oler eng	gineering	tasks	
11.	The incre	ease in the pos	sibility of landslid	es will not affe	ect the bridge or road unless a major	landslid	de takes	place ('see 13 be	low)	
12.	There ho	ave already be	en some minor la	andslides caus	ed by the construction of a road ac	ross the	e hill slo	pe and	l the abili	ty of the	e retaining walls to restrict further landslides is
	limited t	hus the sensiti	vity is very high								
13.	The slop	e of the hillside	e is not high and t	he likelihood o	of a large landslide is not great thus t	he sens	itivity is	low			
13. 14. I	The slop It is not a	e of the hillside clear which au	e is not high and t thority is responsi	he likelihood o ble for this wo	of a large landslide is not great thus t ork, DoR or DWIDP, so the adaptive co	he sens apacity	itivity is may be	low less the	an noted		
13. 14. I	The slope It is not a	e of the hillside clear which au	e is not high and t thority is responsi	he likelihood o ble for this wo	of a large landslide is not great thus t ork, DoR or DWIDP, so the adaptive co	he sens apacity	itivity is may be	low less the	an noted		
13. 14. 1	The slope It is not c	e of the hillside clear which au Road cut	e is not high and t thority is responsi Hill slope	he likelihood o ble for this wo IIDR INRE	of a large landslide is not great thus t ork, DoR or DWIDP, so the adaptive co Intensity and frequency of	he sens apacity VH ¹	itivity is may be VH ²	low less the VH	n noted	Н	Size and frequency of landslides will be
13. 14. 1	The slope It is not c	e of the hillside clear which au Road cut by	e is not high and t thority is responsi Hill slope	he likelihood d ible for this wa IIDR INRE ILE	of a large landslide is not great thus to ork, DoR or DWIDP, so the adaptive co Intensity and frequency of landslides will increase.	he sension apacity (VH ¹	itivity is may be VH ²	low less the VH	H ³	н	Size and frequency of landslides will be higher causing road closer for longer
13. 14. VII Muglin	The slope It is not c g to	e of the hillside clear which au Road cut by Iandslide	e is not high and t thority is responsi Hill slope	he likelihood d ible for this wo IIDR INRE ILE	of a large landslide is not great thus to ork, DoR or DWIDP, so the adaptive co Intensity and frequency of landslides will increase.	he sensity	itivity is may be VH ²	low less the VH	n noted	H	Size and frequency of landslides will be higher causing road closer for longer duration.
13. 14. VII Muglin Narayan	The slope It is not c g to nghat	e of the hillside clear which au Road cut by landslide	e is not high and t thority is responsi Hill slope Gabion	he likelihood d ible for this wo IIDR INRE ILE IIDR INRE	of a large landslide is not great thus to ork, DoR or DWIDP, so the adaptive co Intensity and frequency of landslides will increase. Pore pressure on check dams	he sens apacity VH ¹ VH ⁴	itivity is may be VH ² H ⁵	low less the VH VH	H ³ H ³	H	Size and frequency of landslides will be higher causing road closer for longer duration. The gabion check dams are retaining
13. 14. VII Muglin Narayan Road at I	The slope It is not c g to ghat Mauri	e of the hillside clear which au Road cut by landslide	e is not high and t thority is responsi Hill slope Gabion check dams	he likelihood d ible for this wo IIDR INRE ILE IIDR INRE ILE	of a large landslide is not great thus to ork, DoR or DWIDP, so the adaptive co Intensity and frequency of landslides will increase. Pore pressure on check dams will increase. The increase in	he sens. apacity VH ¹ VH ⁴	itivity is may be VH ² H ⁵	low less the VH VH	H ³ H ³	H	Size and frequency of landslides will be higher causing road closer for longer duration. The gabion check dams are retaining huge amount of debris. If they collapse,
13. 14. VII Muglin Narayan Road at I CHITW	The slope It is not c g to ghat Mauri /AN	e of the hillside clear which au Road cut by landslide	e is not high and t thority is responsi Hill slope Gabion check dams	he likelihood d ible for this wa IIDR INRE ILE IIDR INRE ILE	of a large landslide is not great thus to ork, DoR or DWIDP, so the adaptive co Intensity and frequency of landslides will increase. Pore pressure on check dams will increase. The increase in landslide events will also	he sens. apacity VH ¹ VH ⁴	itivity is may be VH ² H ⁵	low less the VH VH	H ³ H ³	H	Size and frequency of landslides will be higher causing road closer for longer duration. The gabion check dams are retaining huge amount of debris. If they collapse, all the retained debris will move to the
13. 14. VII Muglin Narayan Road at I CHITW	The slope It is not c g to ghat Mauri /AN	e of the hillside clear which au Road cut by landslide	e is not high and t thority is responsi Hill slope Gabion check dams	he likelihood d ible for this wo IIDR INRE ILE IIDR INRE ILE	of a large landslide is not great thus to ork, DoR or DWIDP, so the adaptive co Intensity and frequency of landslides will increase. Pore pressure on check dams will increase. The increase in landslide events will also cause more impact damage to	he sens. apacity VH ¹ VH ⁴	itivity is may be VH ² H ⁵	low less the VH VH	H ³ H ³	H	Size and frequency of landslides will be higher causing road closer for longer duration. The gabion check dams are retaining huge amount of debris. If they collapse, all the retained debris will move to the road causing damage and closure.
13. 14. VII Muglin Narayan Road at I CHITW	The slope It is not c g to gghat Mauri 'AN	e of the hillside clear which au Road cut by landslide	e is not high and t thority is responsi Hill slope Gabion check dams	he likelihood d ible for this wo IIDR INRE ILE IIDR INRE ILE	of a large landslide is not great thus to ork, DoR or DWIDP, so the adaptive co Intensity and frequency of landslides will increase. Pore pressure on check dams will increase. The increase in landslide events will also cause more impact damage to check dams.	he sens. apacity VH ¹ VH ⁴	itivity is may be VH ² H ⁵	low less the VH VH	H ³ H ³	H	Size and frequency of landslides will be higher causing road closer for longer duration. The gabion check dams are retaining huge amount of debris. If they collapse, all the retained debris will move to the road causing damage and closure.
13. 14. VII Muglin Narayan Road at I CHITW	The slope It is not c g to nghat Mauri /AN	e of the hillside clear which au Road cut by landslide	e is not high and t thority is responsi Hill slope Gabion check dams Mauri	he likelihood d ible for this wo IIDR INRE ILE IIDR INRE ILE IIDR INRE	of a large landslide is not great thus to ork, DoR or DWIDP, so the adaptive co Intensity and frequency of landslides will increase. Pore pressure on check dams will increase. The increase in landslide events will also cause more impact damage to check dams. Larger and more frequent	he sens. apacity VH ¹ VH ⁴ VH ⁶	itivity is may be VH ² H ⁵	low less the VH VH VH	H ³	H	Size and frequency of landslides will be higher causing road closer for longer duration. The gabion check dams are retaining huge amount of debris. If they collapse, all the retained debris will move to the road causing damage and closure. Road closure will be more frequent.
13. 14. VII Muglin Narayan Road at I CHITW	The slope It is not c g to nghat Mauri /AN	e of the hillside clear which au Road cut by landslide	e is not high and t thority is responsi Hill slope Gabion check dams Mauri Bridge and	he likelihood d ible for this wa IIDR INRE ILE IIDR INRE ILE IIDR INRE ILE	of a large landslide is not great thus to ork, DoR or DWIDP, so the adaptive co Intensity and frequency of landslides will increase. Pore pressure on check dams will increase. The increase in landslide events will also cause more impact damage to check dams. Larger and more frequent landslides will cause more	he sens. apacity VH ¹ VH ⁴ VH ⁶	itivity is may be VH ² H ⁵	low less the VH VH VH	H ³	H	Size and frequency of landslides will be higher causing road closer for longer duration. The gabion check dams are retaining huge amount of debris. If they collapse, all the retained debris will move to the road causing damage and closure. Road closure will be more frequent. Road rehabilitation cost may increase
13. 14. VII Muglin Narayan Road at I CHITW	The slope It is not c g to Ighat Mauri VAN	e of the hillside clear which au Road cut by landslide	e is not high and t thority is responsi Hill slope Gabion check dams Mauri Bridge and Narayangha	he likelihood d ible for this wa IIDR INRE ILE IIDR INRE ILE IIDR INRE ILE	of a large landslide is not great thus to ork, DoR or DWIDP, so the adaptive co Intensity and frequency of landslides will increase. Pore pressure on check dams will increase. The increase in landslide events will also cause more impact damage to check dams. Larger and more frequent landslides will cause more damage to road and bridge.	he sens. apacity VH ¹ VH ⁴ VH ⁶	itivity is may be VH ² H ⁵	low less the VH VH	H ³	H	Size and frequency of landslides will be higher causing road closer for longer duration. The gabion check dams are retaining huge amount of debris. If they collapse, all the retained debris will move to the road causing damage and closure. Road closure will be more frequent. Road rehabilitation cost may increase substantially.
13. 14. VII Muglin Narayan Road at I CHITW	The slope It is not c g to gghat Mauri 'AN	e of the hillside clear which au Road cut by landslide	e is not high and t thority is responsi Hill slope Gabion check dams Mauri Bridge and Narayangha t- Mugling	he likelihood d ible for this wo IIDR INRE ILE IIDR INRE ILE IIDR INRE ILE	of a large landslide is not great thus to ork, DoR or DWIDP, so the adaptive co Intensity and frequency of landslides will increase. Pore pressure on check dams will increase. The increase in landslide events will also cause more impact damage to check dams. Larger and more frequent landslides will cause more damage to road and bridge.	he sens. apacity VH ¹ VH ⁴ VH ⁶	itivity is may be VH ² H ⁵	low less the VH VH	H ³	H H	Size and frequency of landslides will be higher causing road closer for longer duration. The gabion check dams are retaining huge amount of debris. If they collapse, all the retained debris will move to the road causing damage and closure. Road closure will be more frequent. Road rehabilitation cost may increase substantially.
13. 14. VII Muglin Narayan Road at I CHITW	The slope It is not c g to nghat Mauri /AN	e of the hillside clear which au Road cut by landslide	e is not high and t thority is responsi Hill slope Gabion check dams Mauri Bridge and Narayangha t- Mugling Road	he likelihood d ible for this wo IIDR INRE ILE IIDR INRE ILE IIDR INRE ILE	of a large landslide is not great thus to ork, DoR or DWIDP, so the adaptive co Intensity and frequency of landslides will increase. Pore pressure on check dams will increase. The increase in landslide events will also cause more impact damage to check dams. Larger and more frequent landslides will cause more damage to road and bridge.	he sens. apacity VH ¹ VH ⁴ VH ⁶	itivity is may be VH ² H ⁵ VH ⁷	low less the VH VH VH	H ³	H	Size and frequency of landslides will be higher causing road closer for longer duration. The gabion check dams are retaining huge amount of debris. If they collapse, all the retained debris will move to the road causing damage and closure. Road closure will be more frequent. Road rehabilitation cost may increase substantially.
13. 14. VII Muglin Narayan Road at I CHITW	The slope It is not c g to nghat Mauri /AN	e of the hillside clear which au Road cut by landslide	e is not high and t thority is responsi Hill slope Gabion check dams Mauri Bridge and Narayangha t- Mugling Road ery high rainfall ir	he likelihood of ble for this wo IIDR INRE ILE IIDR INRE ILE IIDR INRE ILE	of a large landslide is not great thus to ork, DoR or DWIDP, so the adaptive co Intensity and frequency of landslides will increase. Pore pressure on check dams will increase. The increase in landslide events will also cause more impact damage to check dams. Larger and more frequent landslides will cause more damage to road and bridge.	he sens. apacity VH ¹ VH ⁴ VH ⁶	itivity is may be VH ² H ⁵ VH ⁷	Iow Iess the VH VH VH	H ³	H H H	Size and frequency of landslides will be higher causing road closer for longer duration. The gabion check dams are retaining huge amount of debris. If they collapse, all the retained debris will move to the road causing damage and closure. Road closure will be more frequent. Road rehabilitation cost may increase substantially.

Strategic Road Network Sector Adaptation Plan Framework for Guidelines: Synthesis Report

- 2. The slope is protected by constructing series of gabion check dams. But it is still very prone to landslide due to steep slope. The slope failure will cause traffic closure which is not permitted due to its extreme importance.
- 3. The adaptive capacity of DoR Division Road Office is High; see section 2.2.4.
- 4. The check dams are located on high landslide prone area.
- 5. The quality of wall is good but it is already overtopped by debris causing substantial increase in back pressure. Damage to check dams will cause movement of debris and road closure.
- 6. The road and bridge is located along very high landslide area.
- 7. The quality of road and bridge is good. But it will be heavily damaged by the probable landslide. The damage will cause road closure which is least desired on such highway. The reconstruction cost of the road and bridge will be high.

ANNEX IV: ADAPTATION PLANNING FOR ASSETS

					Si	nifican	се	Adaptation options	P ada	riority aptatic	on	Adaptation phases
Asset	Physical Threat	Component	Climate Threat	Impact	Likelihood	Seriousness	Significance		Feasibility	Effectiveness	Priority	Regular (R) Immediate (I), Short (S), medium (M) long term (L)
l Sanfebagar to Martadi Road at Tashi ACHHAM	Instability of hillside	Hill Slope	IIDR INRE ILE	The intensity and frequency of slope erosion and landslides events will substantially increase.	VH ¹	VH ²	VH ³	Construct 3m high breast walls; provide surface drains and bio- engineering.	H ⁴	H⁵	H ⁶	S ⁷
		Road	IIDR INRE IDRW	Higher moisture content at sub-grade for longer duration causes pavement failure.	H ⁸	H ⁹	H ¹⁰	Repair and clean side drains. Provide additional measures to drain off the water from the road. Reconstruct road pavement after completing slope stabilization measures.	H ¹¹	H ¹²	H ¹³	R & S ¹⁴

2. The asset lies in the high rainfall area.

2. The landslides can be heavy. There will be loss of lives and properties. Traffic will be closed for several days/months.

- 3. As per matrix.
- 4. The breast wall, water management and bio-engineering are highly feasible as they can prevent heavy landslides and lessen road closure.
- 5. The measures are highly effective to reduce the surface erosion/landslides.
- 6. As per matrix.
- 7. The work should be completed within short period (1-2 years).
- 8. Road pavement has totally failed. At present it is in the form of earthen track. Hence it is highly exposed to increased rainfall.
- 9. The pavement strength is very weak. Extensive rain may cause traffic closure for few hour/days.
- 10. As per matrix.
- 11. Drainage management and new pavement will ensure smooth traffic flow.
- 12. The effectiveness of drainage management and pavement will be high. However, these works should be carried out after landslide stabilization measures.

13. As per matrix.

14. The drains should be regularly cleaned. If necessary additional drainage structures and pavement should be constructed within short period (1-2 years)

ll Nepalgunj to Baghouda Road	Road embankme nt eroded & road cut	Road embankme nt	IIDR INRE IWSF	The road embankment collapsed at several occasions in the past during high flood. The increase in flood will accelerate this process.	VH ¹	VH ²	VH ³	Reconstruct road embankment and provide stone rip rap or gabion mattress at upstream side.	VH ⁴	VH⁵	νн ⁶	7
BANKE		Bank protection works	IIDR INRE IWSF	Bank protection works were frequently damaged by the flood in the past. With increase in flood the damage will be more severe and frequent.	VH ⁸	VH ⁹	VH ¹⁰	Repair/reconstruct the damaged walls providing adequate scour protection measures	VH ¹¹	VH ¹²	H ¹³	I &S ¹⁴
		Cross Drainage Structures	IIDR INRE IWSF	Existing cross drainage structures are not sufficient to pass the current discharge during high flow. With increased flow, this problem will become more severe and probability of damage to those structures will be high	VH ¹ 5	H ¹⁶	H ¹⁷	 Complete construction of cross drainage structures (Baily Bridge, concrete causeway, pipe culvert). Repair/new construction of bank protection works 	H ¹⁸	H ¹⁹	H ²⁰	S ²¹

1. The road embankment lies in highly vulnerable area and collapsed several times in the past.

2. The road will be closed. The farmers cannot sell their goods in the market.

3. As per matrix.

4. It is very essential.

5. It will open the Nepalgunj-Bagauda Road which is the only road to large number of people.

6. As per matrix.

7. The work should be completed as soon as possible.

8. Bank protection walls have collapsed at several locations in the past

9. There will be severe damage to roads, cultivated land and houses. Probability of loss of lives is also high.

10. As per matrix.

DOR & MOSTE | Mainstreaming Climate Change Risk Management in Development

Strategic Road Network Sector Adaptation Plan Framework for Guidelines: Synthesis Report

- 11. It is highly feasible. Repair/reconstruction of bank protection works will save lot of several types of properties as well as lives.
- 12. This will be highly effective to protect properties and the Nepalgunj-Bagauda Road.
- 13. As per matrix.
- 14. Some of the works should be done immediately and some within short period of time.
- 15. Damage to cross drainage structures were frequent in the past. With climate change effect, the exposure will increase.
- 16. There will be some property loss. The road may be closed for short duration.
- 17. As per matrix.
- 18. Cost of cross drainage structures will be less in comparison to the damage done by the river in their absence.

	Failure of Bridge	Pile Foundation	IIDR INRE	Foundation failure due to increase in scour depth	VH 1	VH ²	VH 3	Issue of directives (focusing on	VH⁴	VH 5	VH 6	I ⁷
Bagmati			IWSF					encroachment and sand				
Bridge on								mining) and placement of				
Arniko								watchman to prevent				
Highway,								further scouring and				
Tinkune								provide scour checking				
KATHMANDU								structures around the				
								pile foundation.				
		Bank	IIDR	Failure of wall due to	ŶН	H_{a}	H^{10}	Repair/reconstruct the	VH^{11}	VH	H^{13}	I & R ¹⁴
		Protection	INRE	increase in scouring and	0			damaged walls providing		12		
		Wall	IWSF	water current.				adequate scour				
								protection measures.				

1. The bridge is in very critical condition. There is high chance of bridge failure if there will be more scour due to climate change effect.

2. Cost of bridge reconstruction and traffic management will be very high. There may be loss of lives if the bridge fails suddenly.

3. The bridge lies on the busiest road of Kathmandu city.

4. It is highly feasible. Cost of water scour protection measures will be very low in comparison to consequences due to bridge failure.

- 5. It is very highly effective.
- 6. The adaptation measures should be immediately started.
- 7. Scour protection measures should be started immediately.
- 8. Bank protection walls have collapsed at several locations in the past
- 9. There may be damage to roads and buildings. Probability of loss of lives is nominal
- 10. The reconstruction works will save buildings and roads located near the river.
- 11. It is highly feasible. Repair/reconstruction of walls will be low in comparison to the rehabilitation/repair cost of the damaged properties.
- 12. The repair/reconstruction works are the only option and it will be highly effective.
- 13. The priority for reconstruction of damaged walls is high but not important as scour protection works.

Strategic Road Network Sector Adaptation Plan Framework for Guidelines: Synthesis Report

14. The damaged walls which are located on sensitive areas (which may cause substantial property loss) should be repaired/reconstructed immediately. Walls constructed on less sensitive areas should be covered by regular maintenance works.

IV Sanfebagar to Martadi Road	Erosion of road by river Budhiganga	River Bank	IIDR INRE ILE	Bank erosion will be more severe due to increase in wet season flood volume.	VH ¹	VH ²	VH ³	Construct spurs, groynes etc. to divert the flow towards left bank (away from the road)	H ⁴	H⁵	H ⁶	S ⁷
АСННАМ		Road	IIDR INRE IDRW	Higher moisture content at sub-grade for longer duration causes pavement failure.	H ¹⁵	H ¹⁶	H ¹⁷	Repair and clean side drains. Provide additional measures to drain off the water from the road if required. Reconstruct road pavement after completing slope stabilization measures.	H ¹⁸	H ¹⁹	H ²⁰	R & S ²¹
		Retaining walls	IIDR INRE ILE	Bank erosion will be more severe causing more damage to walls due to increase in wet season flood volume.	VH ⁸	VH ⁹	VH ¹⁰	Construct spurs, groynes etc. to divert the flow towards left bank (away from the road)	H ¹¹	H ¹²	H1 3	S ¹⁴

1. Likelihood of bank erosion is high very due to increase in flood volume.

2. The road will collapse. Traffic will be closed for several days/months. There will be loss of lives and properties.

3. As per matrix.

4. The cost of protection measures is less in comparison to the loss due to road collapse.

5. The proposed measure will be highly effective to protect the road as it will deflect the river away from the road side.

6. As per matrix.

7. The protection measure should be constructed within short period.

8. The bank protection walls are very near to main river course. Hence their exposure is high.

9. The quality of walls is poor (see photo). The road section will be washed away if the walls collapse.

10. As per matrix

11. Repair works especially of gabion walls are highly feasible. It will lengthen their lives and will save considerable amount of money.

12. Repair work is always highly effective.

13. As per matrix

14. Repair works should be carried out on regular basis.

- 15. The road is black topped. Its exposure to higher rainfall will be medium.
- 16. The road pavement will fail. Traffic will not be closed. Loss of lives and properties will be nominal.
- 17. As per matrix
- 18. Management/improvement of water management is always highly feasible because it saves road rehabilitation/reconstruction cost which can be very high.
- 19. It is a highly effective option for road protection
- 20. As per matrix
- 21. The drainage management/construction should be completed within short period and should be regularly monitored

v	Failure of	Bridge	IIDR	Additional siltation may	VH^1	VH ²	VH ³	Clear debris (siltation)	VH^4	H⁵	$\rm VH^6$	1 ⁷
	bridge due	Superstructu	INRE	cause bridge collapse.				from the bridge site.				
Lothar Bridge	to	re	IWSF					Adopt measures to				
on East –	sedimentat							reduce land erosion at				
West	ion due to							catchment area by				
Highway	debris flow							constructing check				
CHITWAN								dams, bio-engineering				
								and discouraging				
								cultivation.				
		Bank	IIDR	Frequency and magnitude	VH ⁸	H ⁹	VH^{10}	Repair/reconstruct the	H^{11}	H^{12}	H^{13}	I. S & R ¹⁴
		protection	INRE	of damage to bank				damaged walls				
		works	IWSF	protection works will be				providing adequate				
				more.				scour protection				
								measures				
		Landslide/La	IIDR	Siltation process is still	VH^1	VH^{16}	VH ¹⁷	Construct check	VH^{18}	VH^1	VH ²	I &L ²¹
		nd Erosion	INRE	very active due to land	5			dams, plant trees and		9	0	
		at	IDRW	erosion at catchment				discourage				
		Catchment		areas. If it is not				cultivation.				
				controlled, increasing								
				rainfall trend will								
				accelerate the process.								
1. The vert	tical clearance is	very little. The flo	od already o	vertopped the bridge in 1993 and	d 2003	which in	dicate th	at the likelihood of the impact	is very h	igh.		

2. The traffic on the most important highway of the country will be disrupted for several days. This will create havoc.

3. As per matrix.

4. It is very essential (more than feasible).

5. It will work for short term but for long term adequate measures should be adopted at the whole catchment areas.

6. As per matrix.

- 7. The work should be completed as soon as possible.
- 8. Bank protection walls have collapsed at several locations in the past and the events will increase further.
- 9. There will be damage to roads, cultivated land and house including loss of lives and properties.
- 10. As per matrix.
- 11. It is feasible. Repair/reconstruction of bank protection will protect adjoining areas.
- 12. This will be effective to protect lives and properties.
- 13. As per matrix.
- 14. The works should be done continuously (immediate, short term, long term and on regular basis) as there is large number of bank protection works.
- 15. Landslides and land erosion process will increase considerably.
- 16. Large amount of debris will be deposited at the bridge site which may cause bridge collapse.
- 17. As per matrix.
- 18. It will be highly feasible. It will protect bridge and the whole catchment area.
- 19. The measures are highly effective and are being adopted in several parts of the country.
- 20. As per matrix.
- 21. The works should be started immediately. But it will take long period.

VI	Failure of	Bailey Bridge	IIDR	Destruction of an	H^1	VH ²	VH ³	4. Carry out detailed	VH^4	H⁵	$\rm VH^6$	1 ⁷
	bridge and	across	INRE	abutment & failure of				condition survey of				
Charnabati	approach	Charnabati	IWSF	bridge				bridge & abutments	VH	Н	VH	S
Bridge &	roads	Khola.						5. Carry out any repair				
Approach								works found by				
Roads on								condition survey	VII			р
Takakoshi –								6. Carry out condition	vп	п	п	ĸ
Jiri Road								survey after every				
DOLAKHA								rainy season				
		Check Dams,	IIDR	Failure of cracked	VH ⁸	H	M^{10}	4. Reconstruct cracked	VH^{11}	VH	VH	I I
		Concrete	INRE	concrete apron slab				apron slab				
		Aprons &	IWSF					5. Condition survey to	VH	Н	Н	
		Side Walls		Consequent failure of	• • 12	× 13	x	all protection works				- ¹⁵
				check dam &	IVI	VH	VH	after every rainy				ĸ
				progressive further				season	ц	ц	ц	P
				failures downstream				6. Carry out works as			11	N
								identified by				

	1	1				1					-
							condition survey				
	Bio	IIDR	-Damage or blockage to	VH ¹⁶	VH ¹⁷	VH ¹⁸	Carry out detailed	Н	VH	Н	R ¹⁹
	Engineering	INRE	surface water drainage				condition survey of				
	and	IWSF	system				drainage system				
	Drainage	ILE	-Damage or blockage to	l			Carry out works				- 19
	works on		sub-surface drainage	Н	VH	VH	required as identified	н	н	н	к
	downstream		system				by condition survey				
	left bank										

1. The detailed condition of the bridge abutments is not known so the threat from increasing flood levels and flash floods is high

2. The failure of an abutment would lead to the failure of the bridge

3. The failure of the bridge would have serious consequences for the district of Dolakha and adjacent districts for a considerable period of time

4. The implementation of regular condition surveys is feasible

5. Keeping records of the condition of structures on a regular basis makes it possible to make a judgement of the sensitivity of a structure to extreme events due to CC possible

6. The collection of information about the condition of highway structures is high priority as it makes it possible to assess & prioritise maintenance and rehabilitation work

7. Condition surveys of bridges and supporting structures should be carried out after every rainy season

8. An apron slab upstream of the bridge has cracked badly with water flowing underneath. It is probable that it will fail completely under a relatively small flood

9. The failure of the apron slab is of itself not very serious but the consequences may be serious in the event of an extreme flood event

10. The significance is not high in the short term but the failure of the apron slab increases the sensitivity of the protection works lower downstream

11. The reconstruction of the damaged slab is urgent in order to reduce the likelihood of a cascade of failures if there should be an extreme weather event

12. The likelihood of a cascade failure following the failure of the apron slab is not high unless there is an extreme rainfall event

13. The consequences of a cascade failure are very high as the stability of the whole system would be in doubt

14. The failure of the system would be highly significant for the road link between Kathmandu and Charikot

15. Regular monitoring of the condition of the protection works and subsequent necessary repair work will reduce the likelihood of failure of the system

16. It is probable that there will be damage to the drainage system under the impact of severe weather events

17. A blockage of damage to the drainage system could cause serious damage and erosion to the bio engineering works

18. Any damage to the drainage or bio engineering works would increase the possibility of landslides causing damage to the hillside and progressing to damage the road

19. Regular monitoring of the condition of the bio engineering works and regular maintenance or rectification of damage will increase the resilience of the system to extreme weather events

VII	Road cut	Hill slope	IIDR	The debris behind the	H ¹	H ²	H ³	Clear the debris	VH^4	H⁵	VH^{6}	I & R ⁷
	by		INRE	check walls have already								
Mugling to	landslide		ILE	started to overtop. If								
Narayanghat				further erosion occurs,								
Road at				large amount of debris								
Mauri				will move to the road.								

Strategic Road Network Sector Adaptation Plan Framework for Guidelines: Synthesis Report

CHITWAN	Gabion	IIDR	Land erosion has started	H ⁸	H ⁹	H^{10}	Provide check walls,	H ¹¹	H^{12}	H^{13}	S &L ¹⁴
	check dams	INRE	to occur at several other				surface and sub-surface				
		ILE	locations.				drains and bio-				
							engineering at the				
							whole slope.				
	Mauri Bridge	IIDR	The local people are	M ¹⁵	H ¹⁶	H^{17}	Encourage the local	H ¹⁸	H ¹⁹	H ³	S & L ²⁵
	and	INRE	cultivating at the top of				people to shift the				
	Narayanghat	ILE	hill slope. With increase				cropping pattern				
	- Mugling		in rainfall, more water				(encourage plantation				
	Road		will penetrate through				which require less				
			the cultivated land and				water).				
			will increase the								
			moisture content of the								
			whole slope. This may								
			cause collapse of the								
			road side breast walls.								

1. The debris has already started to overtop the walls at several locations. With further increase of land erosion, large amount of debris will move to the road.

- 2. The event will damage the road and close the traffic.
- 3. As per matrix.
- 4. Removal of debris will be highly feasible in comparison to consequence due to road closure and road repair cost
- 5. It is one of the effective methods to prevent the debris movement.
- 6. As per adaption priority matrix.
- 7. The works should be carried out immediately and on regular basis.
- 8. Due to loose slope there is high probability of land erosion at new areas.
- 9. The land erosion could be serious if controlling measures are not adopted timely.
- 10. As per adaption priority matrix.
- 11. The measure will be feasible in a longer period.
- 12. It is highly effective method and is being adopted at several landslide prone areas of the country.
- 13. As per matrix
- 14. The whole works may take long period.
- 15. The quality of road side breast walls is good and hence they may collapse only if the pore pressure increases substantially.
- 16. The road will closed for few hours/days depending upon the magnitude of slope failure. The reconstruction cost of the wall will be high.
- 17. As per matrix
- 18. This could be highly feasible if the local people are convinced.
- 19. It will protect from large scale damage

- 20. As per matrix
- 21. These works should be started immediately but it may take long period.

ANNEX V: LIST OF GOVERNMENT OFFICIALS PARTICIPATING IN TIFFIN TALK & ROUND TABLE MEETINGS

No.	Name	Position/Organization
1	Mr. Arjun Jung Thapa	DDG, Planning
2	Mr. Keshab K. Sharma	DDG, DoR
3	Er. Meera Joshi	Environmental Expert, DoR
4	Ms. Pramila Bajracharya	Project Co ordinator/ RIP
5	Mr. Ganesh Kumar Gautam	SDE, BP,DoR
6	Mr. Rakesh Maharjan	Engineer. DoR
7	Mr. Ajaya Muli	Project Co-ordinator
8	Mr. Rabi Bhushan Jha	MD, BEAM consultant
9	Mr. Shyam Bikram	SDE, DoR
10	MR. Umesh B. Shrestha	SDE, DoR
11	Mr. Ghan Shyam Gautam	Unit Chief, RSSDU, DoR
12	Mr. Krishna B. Thapa	Engineer, RTU, DoR
13	Mr. Purna Shrestha	SDE, DoR
14	Mr. Shiva Raj Adhiakri	SDE, DoR
15	Mr. Naresh Shakya	SDE,DoR
16	Mr. Bijendra Bade Shrestha	SDE, DoR
17	Mr. Akhanda Sharma	SDE, MoSTE
18	Mr. Dipak Shrestha	SDE, BP, DoR
19	Mr. Shiva Prasad Nepal	SDE, DoR
20	Mr.Ghana Shyam Gautam	SDE, DoR

DOR & MOSTE | Mainstreaming Climate Change Risk Management in Development Strategic Road Network Sector Adaptation Plan Framework for Guidelines: Synthesis Report

No.	Name	Position/Organization
21	Mr. Shuva Raj Neupane	Engineer , DoR
22	Mr. Ghana Shyam Gautam	SDE, DoR
23	Mr. Laxmi Datta Bhatta	SDE, Dotr
24	Mr. Niranjan Thapa	Engineer, DoR
25	Mr. Shiva Prasad Nepal	SDE, DoR
26	Mr. Shuva Raj Neupane	Engineer, DoR

ANNEX VI: ISSUES RAISED AT 22/23 SEP WORKSHOP WITH RESPONSES

Raised by	Issues	Response
MrShah, SE, DUDBC	At several roads of Kathmandu City, traffic is disturbed due to excessive accumulation of water or for any other reasons. Can some system be installed so that the road users could get the information beforehand?	Traffic management is the responsibility of the Department of Transport and Kathmandu Traffic Police
Mr. Akhanda Sharma, NPM	Condition of assts is explained using parameters such as exposure, sensitivity, likelihood etc and their degree (VH, H, M, L and VL). The consultants need to discuss in detail with the related departments to agree on using the above terminology for VA and AP.	The relative values of the parameters used in the VA & AP assessments are part of the ongoing discussions with DoR and DoLIDAR
	Effect of CC will not be same for road pavement, retaining wall, bridge etc. Hence they should be dealt separately.	The VA & AP analysis should be carried out for all the different elements in the Strategic and Rural Road Networks
	Bridge sector should be addressed separately.	Agreed.
	Synthesis Report does not include the effect of CC on snowfall, fog, visibility etc.	The Climate Threat Profiles do not provide sufficient information for these effects to be included in the threat analysis
	Planning/developing training package should be provided in detail.	Training packages/modules are part of the next phase of the Project
Mr. Madan Manandhar, Director, METCON	Social aspects are missing in VA and AP.	Social vulnerabilities will be addressed for relevant assets
Mr. Suraj Pokharel, DG, Department of Environment	Can we prepare separate typical design of structures considering CC effect?	As the threats from CC become more accurately defined so designs can be modified to make structures more resilient

Issues raised in Sept 22 - 23 presentation (DoR/DOLIDAR)

ANNEX VII: BIBLIOGRAPHY

- GoN, MOPPW, DoR (2007), Sector wide Road Programme and Priority Investment Plan
- GoN, MOPIT DoR (2010), Nepal Bridges Standard -2067
- GoN, MOPIT, DoR (2013), Nepal Road Standard 2070
- GoN, MOPPW, DoR (2012), Strategic Road Network of Nepal
- The World Bank, GoN in association with ADB, DFID and SDC (2012), Nepal Road Sector Assessment Study
- GoN, MOWT, DoR (1995), Department Policy Document: The DOR Strategy